Refine Your Search

Topic

null

Search Results

Standard

Heavy Truck and Bus Retarder Downhill Performance Mapping Procedure

2000-05-01
J1489_200005
The procedure covers the estimation of the total retardation capability available to a specific vehicle from: a Natural retardation (rolling resistance, aerodynamic drag, etc). b Engine drag c Engine, integral automatic transmission, driveline or trailer-axle retarders It assumes that foundation brakes are not used for maintaining speed on long mountain descents. Retardation is rated in terms of the maximum grades on which stable control speeds can be maintained for each gear over the range of highway speeds appropriate to that gear. For each gear, the calculation procedure determines maximum grades for at least four values of control speed ranging from the vehicle velocity corresponding to full load governed engine rpm, to the vehicle velocity corresponding to the engine rpm at minimum (idle) speed. In addition, the calculation procedure provides information on the total retarding power available for each gear.
Standard

Pilot Bearings for Truck and Bus Applications

2017-08-14
J1731_201708
This SAE Recommended Practice describes STANDARD-DUTY and EXTREME-DUTY Pilot Bearing requirements and sizes for class 6, 7, and 8 on-highway trucks and buses that use diesel engines and manual transmissions. The recommendations may apply to a wide range of other pilot-bearing applications, such as agricultural, industrial, and construction equipment.
Standard

Pilot Bearings for Truck and Bus Applications

2001-06-12
J1731_200106
This SAE Recommended Practice describes STANDARD-DUTY and EXTREME-DUTY Pilot Bearing requirements and sizes for class 6, 7, and 8 on-highway trucks and buses that use diesel engines and manual transmissions. The recommendations may apply to a wide range of other pilot-bearing applications, such as agricultural, industrial, and construction equipment.
Standard

Recommended Practices for CNG Powered Medium and Heavy-Duty Trucks

2018-02-12
J2406_201802
This SAE Recommended Practice provides guidance for the construction, operation, and maintenance of CNG powered medium and heavy-duty trucks. The intent of this document is to cover TRUCKS (6350 kg (14 001 gvw pounds) and above) and specifically excludes passenger vehicles such as: buses, recreational vehicles, motor homes and/or passenger vehicles which may incorporate a truck chassis in their construction.
Standard

Recommended Practices for CNG Powered Medium and Heavy-Duty Trucks

2002-03-13
J2406_200203
This SAE Recommended Practice provides guidance for the construction, operation, and maintenance of CNG powered medium and heavy-duty trucks. The intent of this document is to cover TRUCKS (6350 kg (14 001 gvw pounds) and above) and specifically excludes passenger vehicles such as: buses, recreational vehicles, motor homes and/or passenger vehicles which may incorporate a truck chassis in their construction.
Standard

SAE NODAL MOUNT

1992-02-01
J1134_199202
This SAE Recommended Practice establishes a single bolt pattern for the No. 1 clutch housing (see Figure 1) and the No. 2 clutch housing (see Figure 2). These four bolt patterns are designated to give commonality of mounting brackets in existing frame rails. The 420 mm (16.5 in) span, pad face to pad face, allows the ease of installation in existing frame rail widths. This is also the minimum spacing which will accommodate commonly used clutches.
Standard

SAE NODAL MOUNT

1983-10-01
J1134_198310
This SAE Recommended Practice establishes a single bolt pattern for both No. 1 and No. 2 clutch housings (see Fig. 1). This four-bolt pattern is designated to give commonality of mounting brackets in existing frame rails. The 16.5 in span, pad face to pad face, allows the ease of installation in existing frame rail widths. This is also the minimum spacing which will accommodate a 15.5 in two-plate clutch. The bolt pattern due to its symmetry allows reversing or inverting of brackets to attain change in vertical or horizontal positioning with fewer brackets. The phi (ϕ) symbol is for the convenience of the user in locating areas where technical revisions have been made to the previous issue of the report. If the symbol is next to the report title, it indicates a complete revision of the report.
Standard

Axle Efficiency Test Procedure

2001-04-27
J1266_200104
Data from this SAE Recommended Practice permit mapping axle efficiency and/or waste energy over the operating range of trucks, busses, and other highway vehicles based on truck chasses.
Standard

AXLE EFFICIENCY TEST PROCEDURE

1979-06-01
J1266_197906
Data from this procedure permits mapping axle efficiency and/or waste energy over the operating range of passenger cars, trucks, busses, and other highway vehicles to which axles are applied.
Standard

AXLE EFFICIENCY TEST PROCEDURE

1990-06-01
J1266_199006
Data from this procedure permit mapping axle efficiency and/or waste energy over the operating range of passenger cars, trucks, busses, and other highway vehicles.
Standard

AUTOMOTIVE PULL TYPE CLUTCH TERMINOLOGY

1985-01-01
J1479_198501
This document describes the terms or names of the parts, characteristics, and parameters of automotive pull type clutches used in trucks, and of vehicle apparatus or components related to the pull type clutch.
Standard

AUTOMOTIVE PULL TYPE CLUTCH TERMINOLOGY

1991-04-01
J1479_199104
This SAE Standard describes the terms or names of the parts, characteristics, and parameters of automotive pull type clutches used in trucks, and of vehicle apparatus or components related to the pull type clutch.
X