Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Spray Characterization of Ethanol Gasoline Blends and Comparison to a CFD Model for a Gasoline Direct Injector

2010-04-12
2010-01-0601
Operation of flex fuel vehicles requires operation with a range of fuel properties. The significant differences in the heat of vaporization and energy density of E0-E100 fuels and the effect on spray development need to be fully comprehended when developing engine control strategies. Limited enthalpy for fuel vaporization needs to be accounted for when developing injection strategies for cold start, homogeneous and stratified operation. Spray imaging of multi-hole gasoline injectors with fuels ranging from E0 to E100 and environmental conditions that represent engine operating points from ambient cold start to hot conditions was performed in a spray chamber. Schlieren visualization technique was used to characterize the sprays and the results were compared with Laser Mie scattering and Back-lighting technique. Open chamber experiments were utilized to provide input and validation of a CFD model.
Journal Article

Experimental Investigation of the Interaction of MultipleGDI Injections using Laser Diagnostics

2010-04-12
2010-01-0596
In present GDI engines, multiple injection strategies are often employed for engine cold start mixture formation. In the future, these strategies may also be used to control the combustion process, and to prevent misfiring or high emission levels. While the processes occurring during individual injections of GDI injectors have been investigated by a number of researchers, this paper concentrates on the interactions of multiple injection events. Even though multiple injection strategies are already applied in most GDI engines, the impact of the first injection event on the second injection event has not been analyzed in detail yet. Different optical measurement techniques are used in order to investigate the interaction of the two closely timed injection events, as well as the effect of dwell time and the in-cylinder conditions. The injector investigated is a GDI piezo injector with an outwardly opening needle.
Journal Article

Effects of Fuel Cell Material Properties on Water Management Using CFD Simulation and Neutron Imaging

2010-04-12
2010-01-0934
Effects of fuel cell material properties on water management were numerically investigated using Volume of Fluid (VOF) method in the FLUENT. The results show that the channel surface wettability is an important design variable for both serpentine and interdigitated flow channel configurations. In a serpentine air flow channel, hydrophilic surfaces could benefit the reactant transport to reaction sites by facilitating water transport along channel edges or on channel surfaces; however, the hydrophilic surfaces would also introduce significantly pressure drop as a penalty. For interdigitated air flow channel design, it is observable that liquid water exists only in the outlet channel; it is also observable that water distribution inside GDL is uneven due to the pressure distribution caused by interdigitated structure. An in-situ water measurement method, neutron imaging technique, was used to investigate the water behavior in a PEM fuel cell.
Journal Article

Characteristics of Ion Current Signals in Compression Ignition and Spark Ignition Engines

2010-04-12
2010-01-0567
Ion current sensors have been considered for the feedback electronic control of gasoline and diesel engines and for onboard vehicles powered by both engines, while operating on their conventional cycles or on the HCCI mode. The characteristics of the ion current signal depend on the progression of the combustion process and the properties of the combustion products in each engine. There are large differences in the properties of the combustible mixture, ignition process and combustion in both engines, when they operate on their conventional cycles. In SI engines, the charge is homogeneous with an equivalence ratio close to unity, ignition is initiated by an electric spark and combustion is through a flame propagating from the spark plug into the rest of the charge.
Technical Paper

Smart Spark Plug for Proper Combustion Timing in Gasoline Engines and Detection of Misfire and Knock

2020-04-14
2020-01-0790
Internal combustion engines are required to achieve production goals of better fuel economy, improved fuel economy and reduced emissions in order to meet the current and future stringent standards. To achieve these goals, it is essential to control the combustion process using an in-cylinder combustion sensor and a system that produces a feedback signal to the ECU. This paper presents a system based on combustion ionization that includes a newly developed smart spark plug capable of sensing the whole combustion process. A unique feature of the smart spark plug system is its ability to sense the early stages of combustion and produce a complete ion current signal that accurately identifies and can be used for the control of the start of combustion.
Journal Article

Transient Fluid Flow and Heat Transfer in the EGR Cooler

2008-04-14
2008-01-0956
EGR is a proven technology used to reduce NOx formation in both compression and spark ignition engines by reducing the combustion temperature. In order to further increase its efficiency the recirculated gases are subjected to cooling. However, this leads to a higher load on the cooling system of the engine, thus requiring a larger radiator. In the case of turbocharged engines the large variations of the pressures, especially in the exhaust manifold, produce a highly pulsating EGR flow leading to non-steady-state heat transfer in the cooler. The current research presents a method of determining the pulsating flow field and the instantaneous heat transfer in the EGR heat exchanger. The processes are simulated using the CFD code FIRE (AVL) and the results are subjected to validation by comparison with the experimental data obtained on a 2.5 liter, four cylinder, common rail and turbocharged diesel engine.
Journal Article

Impact of A/F Ratio on Ion Current Features Using Spark Plug with Negative Polarity

2008-04-14
2008-01-1005
The increasing interest and requirement for improved electronic engine control during the last few decades, has led to the implementation of several different sensor technologies. The process of utilizing the spark plug as a combustion probe to monitor the different combustion related parameters such as knock, misfire, Ignition timing, and air-fuel ratio have been the subject of research for some time now. The air-fuel ratio is one of the most important engine operating parameters that has an impact on the combustion process, engine-out emissions, fuel economy, indicated mean effective pressure and exhaust gas composition and temperature. Furthermore, air-fuel ratio affects the ion produced during flame kernel initiation and post flame propagation. In this paper, an investigation is made to determine the effect of air-fuel ratio on ion current, using gasoline and methane under different spark plug designs and engine operating conditions.
Journal Article

Characterization of the Near-Field Spray and Internal Flow of Single-Hole and Multi-Hole Sac Nozzles using Phase Contrast X-Ray Imaging and CFD

2011-04-12
2011-01-0681
It is well know that the internal flow field and nozzle geometry affected the spray behavior, but without high-speed microscopic visualization, it is difficult to characterize the spray structure in details. Single-hole diesel injectors have been used in fundamental spray research, while most direct-injection engines use multi-hole nozzle to tailor to the combustion chamber geometry. Recent engine trends also use smaller orifice and higher injection pressure. This paper discussed the quasi-steady near-nozzle diesel spray structures of an axisymmetric single-hole nozzle and a symmetric two-hole nozzle configuration, with a nominal nozzle size of 130 μm, and an attempt to correlate the observed structure to the internal flow structure using computational fluid dynamic (CFD) simulation. The test conditions include variation of injection pressure from 30 to 100 MPa, using both diesel and biodiesel fuels, under atmospheric condition.
Journal Article

Role of Volatility in the Development of JP-8 Surrogates for Diesel Engine Application

2014-04-01
2014-01-1389
Surrogates for JP-8 have been developed in the high temperature gas phase environment of gas turbines. In diesel engines, the fuel is introduced in the liquid phase where volatility plays a major role in the formation of the combustible mixture and autoignition reactions that occur at relatively lower temperatures. In this paper, the role of volatility on the combustion of JP-8 and five different surrogate fuels was investigated in the constant volume combustion chamber of the Ignition Quality Tester (IQT). IQT is used to determine the derived cetane number (DCN) of diesel engine fuels according to ASTM D6890. The surrogate fuels were formulated such that their DCNs matched that of JP-8, but with different volatilities. Tests were conducted to investigate the effect of volatility on the autoignition and combustion characteristics of the surrogates using a detailed analysis of the rate of heat release immediately after the start of injection.
Journal Article

Particulate Matter Characterization Studies in an HSDI Diesel Engine under Conventional and LTC Regime

2008-04-14
2008-01-1086
Several mechanisms are discussed to understand the particulate matter (PM) characterization in a high speed, direct injection, single cylinder diesel engine using low sulfur diesel fuel. This includes their formation, size distribution and number density. Experiments were conducted over a wide range of injection pressures, EGR rates, injection timings and swirl ratios, therefore covering both conventional and low temperature combustion regimes. A micro dilution tunnel was used to immediately dilute a small part of the exhaust gases by hot air. A Scanning Mobility Particle Sizer (SMPS) was used to measure the particulate size distribution and number density. Particulate mass was measured with a Tapered Element Oscillating Microbalance (TEOM). Analysis was made of the root cause of PM characterization and their relationship with the combustion process under different operating conditions.
Technical Paper

In-Cylinder Air/Fuel Ratio Approximation Using Spark Gap Ionization Sensing

1998-02-23
980166
Experiments were conducted on a single cylinder engine to measure the ionization current across the spark plug electrodes as a function of key operating parameters including air/fuel ratio. A unique ignition circuit was adapted to measure the ion current as early as 300 microseconds after the initiation of spark discharge. A strong relationship between air/fuel ratio and features of the measured ion current was observed. This relationship can be exploited via relatively simple algorithms in a wide range of electronic engine control strategies. Measurements of spark plug ion current for approximating air/fuel ratio may be especially useful for use with low cost mixture control in small engine applications. Cylinder-to-cylinder mixture balancing in conjunction with a global exhaust gas oxygen sensor is another promising application of spark plug ion current measurement.
Technical Paper

Determination of the Gas-Pressure Torque of a Multicylinder Engine from Measurements of the Crankshaft's Speed Variation

1998-02-23
980164
The local variation of the crankshaft's speed in a multicylinder engine is determined by the resultant gas-pressure torque and the torsional deformation of the crankshaft. Under steady-state operation, the crankshaft's speed has a quasi-periodic variation and its harmonic components may be obtained by a Discrete Fourier Transform (DFT). Based on a lumped-mass model of the shafting, correlations are established between the harmonic components of the speed variation and the corresponding components of the engine torque. These correlations are used to calculate the gas-pressure torque or the indicated mean effective pressure (IMEP) from measurements of the crankshaft's speed.
Technical Paper

Ion Current in a Spark Ignition Engine using Negative Polarity on Center Electrode

2007-04-16
2007-01-0646
Most of the previous research on flame ionization in spark ignition engines applied positive polarity on the spark plug center electrode, referred to as positively biased probe. In this paper an investigation is made to determine the characteristics of the ion current signal with negatively biased probe. The factors that contribute to the second ion current peak, reported to be missing with negative polarity, are investigated. Experiments were conducted on a research single-cylinder, spark ignition engine and the negative polarity is applied by a SmartFire Plasma Ignition system. The effect of different spark plug designs and engine operating parameters on the amplitude and timing of each of the two ion current peaks is determined. The results indicated that, with negative polarity, the cathode area is one of the main factors that contribute to the amplitude of the ion current signal, particularly the second peak.
Technical Paper

Lower Temperature Limits for Cold Starting of Diesel Engine with a Common Rail Fuel Injection System

2007-04-16
2007-01-0934
One of the most challenging problems in diesel engines is to reduce unburned HC emissions that appear as (white smoke) during cold starting. In this paper the research is carried out on a 4-cylinder diesel engine with a common rail fuel injection system, which is able to deliver multiple injections during cold start. The causes of combustion failure at lower temperature limits are investigated theoretically by considering the rate of heat release. The results of this clearly indicate that in addition to low cranking engine speed, heat transfer and blow-by losses at lower ambient temperatures, fuel injection events would contribute to the failure of combustion. Also, combustion failure takes place when the compression temperature is lower than some critical value. Based on these results, split-main injection strategy was applied during engine cold starting and validated by experiments in a cold room at lower ambient temperatures.
Technical Paper

Simulation-Based Cold-Start Control Strategy for a Diesel Engine with Common Rail Fuel System at Different Ambient Temperatures

2007-04-16
2007-01-0933
A new tool has been used to arrive at appropriate split injection strategy for reducing the cranking period during the cold start of a multi-cylinder engine at decreasing ambient temperatures. The concept behind this tool is that the combination of different injection parameters that produce the highest IMEP should be able to improve the cold startability of the diesel engine. In this work the following injection parameters were considered: 1) injection timing, 2) split injection fraction, 3) dwell time and 4) total fuel mass injected per cycle. A commercial engine cyclic simulation code has been modified for diesel engine cycle simulation at lower ambient temperatures. The code was used to develop IMEP control maps. The maps were used to identify the parameters that would give the best IMEP. The strategies that have been identified have been validated experimentally in a multi-cylinder diesel engine equipped with a common rail fuel injection system.
Technical Paper

An Analysis of Regulated and Unregulated Emissions in an HSDI Diesel Engine under the LTC Regime

2007-04-16
2007-01-0905
Several mechanisms are discussed to understand the formation of both regulated and unregulated emissions in a high speed, direct injection, single cylinder diesel engine using low sulphur diesel fuel. Experiments were conducted over a wide range of injection pressures, EGR rates, injection timings and swirl ratios. The regulated emissions were measured by the standard emission equipment. Unregulated emissions such as aldehydes and ketones were measured by high pressure liquid chromatography and hydrocarbon speciation by gas chromatography. Particulate mass was measured with a Tapered Element Oscillating Microbalance (TEOM). Analysis was made of the sources of different emission species and their relationship with the combustion process under the different operating conditions. Special attention is given to the low temperature combustion (LTC) regime which is known to reduce both NOx and soot. However the HC, CO and unregulated emissions increased at a higher rate.
Technical Paper

Engine Friction Model for Transient Operation of Turbocharged, Common Rail Diesel Engines

2007-04-16
2007-01-1460
The simulation of I.C. Engines operation, especially during transients, requires a fairly accurate estimation of the internal mechanical losses of the engine. The paper presents generic friction models for the main friction components of the engine (piston-ring-liner assembly, bearings and valve train), considering geometry of the engine parts and peculiarities of the corresponding lubrication processes. Separate models for the mechanical losses introduced by the injection system, oil and water pumps are also developed. All models are implemented as SIMULINK modules in a complex engine simulation code developed in SIMULINK and capable to simulate both steady state and transient operating conditions. Validation is achieved by comparison with measurements made on a four cylinder, common rail diesel engine, on a test bench capable to run controlled transients.
Technical Paper

Transient Flow and Pressure Characteristics Inside a Closed-Coupled Catalytic Converter

1998-10-19
982548
An experimental study was carried out to characterize the exhaust flow structure inside the closed-coupled catalytic converter, which is installed on a firing four-cylinder 12-valve passenger car gasoline engine. Simultaneous velocity and pressure measurements were taken using cycle-resolved Laser Doppler anemometer (LDA) technique and pressure transducer. A small fraction of titanium (IV) iso-propoxide was dissolved in gasoline to generate titanium dioxide during combustion as seeding particles for the LDA measurements. It was found that the velocity is highly fluctuating due to the pulsating nature of the engine exhaust flow, which strongly depends on the engine operating conditions and the measuring locations. The pressure oscillation is correlated with the transient exhaust flow characteristics. The main exhaust flow event from each cylinder can only be observed at the certain region in front of the monolith brick.
Technical Paper

Diesel Engine Diagnosis Based on Analysis of the Crankshaft's Speed Variation

1998-10-19
982540
The variation of the crankshaft's speed is influenced by the action of the cylinders and shall reflect the contribution of each cylinder to the total engine output. At the same time, the speed variation is influenced by the torsional stiffness of the cranks, the mass moments of inertia of the reciprocating mechanisms and the average speed and load of the engine. As the result, the variation of angular motion of the crankshaft is complex, each particular influence changing its importance as speed and load are modified. The diagnostic method presented in the paper is based on the analysis of the amplitudes and phases of the lowest harmonic orders of the measured speed and is capable to determine the average Indicated Mean Effective Pressure (IMEP), to detect nonuniformities in cylinder operation and to identify the faulty cylinder(s).
Technical Paper

Visualization of Direct-Injection Gasoline Spray and Wall-impingement Inside a Motoring Engine

1998-10-19
982702
Two-dimensional pulse-laser Mie scattering visualization of the direct-injection gasoline fuel sprays and wall impingement processes was carried out inside a single-cylinder optically accessible engine under motoring condition. The injectors have been first characterized inside a pressurized chamber using identical technique, as well as high-speed microscopic visualization and phase Doppler measurement techniques. The effects of injector cone angle, location, and injection timings on the wall impingement processes were investigated. It was found that the fuel vaporization is not complete at the constant engine speed tested. Fuel spray droplets were observed to disperse wider in the motored engine when compared with an isothermal quiescent ambient conditions. The extent of wall-impingement varies significantly with the injector mounting position and spray cone angle; however, its effect can be reduced to some extent by optimizing the injection timing.
X