Refine Your Search

Topic

Author

Affiliation

Search Results

Standard

Combination Tail and Floodlamp for Industrial Equipment

2003-05-15
CURRENT
J94_200305
This SAE Standard provides performance and general design requirements and related test procedures for a combination tail and floodlamp for use on industrial wheeled equipment that may be operated on public roads.
Video

Enabling New Optical Fiber Applications in Avionics Networks

2012-03-21
Optical fiber has begun replacing copper in avionic networks. So far, however, it has been mainly restricted to non-critical applications (video transmission to the flight deck, IFE?). In order to take advantage of the high-bandwidth, low weight, no EMI properties of optical fibers in all data transmission networks, it will be necessary to improve the testing. One part of the puzzle, which is still missing, is the self-test button: the possibility to check the network and detect potential failures before they occur. The typical testing tool of a technician involved in optical fiber cables is the ?light source ? optical power meter? pair. With this tool, one can measure the insertion loss of the fiber link. A second important parameter, the return loss at each optical connector, is not analysed. In addition, this is only a global measurement, which does not allow the detection of possible weak points.
Video

Business Model for Successful Commercialization of Aircraft Designs

2012-03-21
This article characterizes the special features of drilling of CFRP/Titanium and -Aluminium stacks. Simplified theoretic models will show how CFRP/Titanium stacks should be machined without scratches and burn marks contacting carbon. Low axial forces and smart chip removal technology are the main characteristics of the drilling tool technology, optimized to reach H8 quality in one shot operation. Presenter Peter Mueller-Hummel, Cutting Tools Inc.
Video

Automating AFP Tuning Using a Laser Sensor

2012-03-22
A significant step is achieved on the flight control actuation system toward the more electrical aircraft through the Airbus A380, A400M and the A350 development phase ongoing. The A380/A400M/A350 features a mixed flight control actuation power source distribution, associating electrically powered actuators with conventional FlyByWire hydraulic servocontrols. In the scope of the preparation of the future Airbus Aircraft, this paper presents the perspectives of the use of the EMA technologies for the flight control systems in the more electrical aircraft highlighting the main technical challenges need to treat: jamming susceptibility, ?on board? maintenance reduction, Operational reliability increase, power electronics and power management optimization, and regarding the environmental constraints, the predicted performances; the benefits associated to the optimized utilization of on-board power sources.
Video

Polycarbonate Glazing - Accelerated Wiper Testing, Surface Characterization and Comparison with On-Road Fleet Data

2012-05-23
Exatec� PC glazing technology team, has developed advanced weathering and abrasion resistant coatings technology that can be applied to protect polycarbonate. It is of particular interest to quantify and understand the factors that determine the surface abrasion performance of coated PC in rear window and backlight applications that have a wiper system. In the present study we describe Exatec's lab scale wiper testing equipment and test protocols. We also describe adaptation of optical imaging system to measure contrast and nano-profiling using nano-indenter, as post wiper surface characterization methods. These methods are more sensitive to fine scratches on glazing surface than standard haze measurement and mechanical profilometry. Three coating systems were investigated; Siloxane wetcoat (A), Siloxane wetcoat (B), and Siloxane wetcoat (B) plus plasma coat (Exatec� E900 coating). The performance comparisons were made using all these surface characterization methods.
Collection

Lighting Technology and Human Factors, 2005

2010-09-15
This technical paper collection contains 29 papers covering lighting technologies. Topics covered include improving lower beam visibility, LED headlamp design, mirror mounted turn signals, condensation in headlamps, headlight glare exposure and recovery, glare on driving behavior, and more.
Collection

Automotive Lighting Technology and Human Factors in Driver Vision and Lighting, 2007

2010-09-23
The 28 papers in this technical paper collection discuss automotive lighting product innovation and improvement; engineering analysis: new light sources evaluations; advanced lighting technologies: LED applications; benefits of the advanced road illumination; and visual aspects of the lighting systems and how drivers are effected by the inputs of these systems.
Collection

Automotive Lighting Technology and Human Factors in Driving Vision and Lighting, 2011

2011-04-12
The 16 papers in this technical paper collection discuss automotive lighting and human factors in driving vision. Topics include: image processing methods; adaptation into automotive of the NASA developed CATS (Cognitive Avionic Tool Set); safety and performance benefits associated with the use of a spotter mirror; automotive legibility; 25W HID headlamp; automotive illumination design with LED modules; and more.
Collection

CI & SI Power Cylinder Systems, 2014

2014-04-01
This technical paper collection covers the Power Cylinder: piston, piston rings, piston pins, and connecting rods. The papers include information on reducing friction and increasing fuel economy, improving durability by understanding wear, and decreasing oil consumption and blow-by.
Journal Article

Exhaust Manifold Thermal Assessment with Ambient Heat Transfer Coefficient Optimization

2018-06-04
Abstract Exhaust manifolds are one of the most important components on the engine assembly, which is mounted on engine cylinder head. Exhaust manifolds connect exhaust ports of cylinders to the turbine for turbocharged diesel engine therefore they play a significant role in the performance of engine system. Exhaust manifolds are subjected to very harsh thermal loads; extreme heating under very high temperatures and cooling under low temperatures. Therefore designing a durable exhaust manifold is a challenging task. Computer aided engineering (CAE) is an effective tool to drive an exhaust manifold design at the early stage of engine development. Thus advanced CAE methodologies are required for the accurate prediction of temperature distribution. However, at the end of the development process, for the design verification purposes, various tests have to be carried out in engine dynamometer cells under severe operating conditions.
Journal Article

Impact of Rear Spoiler on Vehicle Braking Longitudinal Dynamics

2021-04-30
Abstract During vehicle braking, friction forces generated on the vehicle tires and the vehicle resisting aerodynamic forces play a critical role that impact the vehicle’s longitudinal braking dynamics such as stopping distance and time. These forces are mainly the tires’ braking and rolling resisting forces, vehicle lift, and drag forces. The vehicle aerodynamic forces cannot be neglected due to their impact on the vehicle’s longitudinal dynamics, especially at high vehicle speeds. This article investigates the impact of the vehicle’s rear spoiler on both vehicle aerodynamic forces and longitudinal dynamic, such as stopping distance and time. A computational fluid dynamics (CFD) model using ANSYS-Fluent® is employed to precisely estimate the vehicle’s aerodynamic forces in the case of a vehicle without and with a rear spoiler.
Journal Article

3D Scene Reconstruction with Sparse LiDAR Data and Monocular Image in Single Frame

2017-09-23
Abstract Real-time reconstruction of 3D environment attributed with semantic information is significant for a variety of applications, such as obstacle detection, traffic scene comprehension and autonomous navigation. The current approaches to achieve it are mainly using stereo vision, Structure from Motion (SfM) or mobile LiDAR sensors. Each of these approaches has its own limitation, stereo vision has high computational cost, SfM needs accurate calibration between a sequences of images, and the onboard LiDAR sensor can only provide sparse points without color information. This paper describes a novel method for traffic scene semantic segmentation by combining sparse LiDAR point cloud (e.g. from Velodyne scans), with monocular color image. The key novelty of the method is the semantic coupling of stereoscopic point cloud with color lattice from camera image labelled through a Convolutional Neural Network (CNN).
Journal Article

Efficient Lane Detection Using Deep Lane Feature Extraction Method

2017-09-23
Abstract In this paper, an efficient lane detection using deep feature extraction method is proposed to achieve real-time lane detection in diverse road environment. The method contains three main stages: 1) pre-processing, 2) deep lane feature extraction and 3) lane fitting. In pre-processing stage, the inverse perspective mapping (IPM) is used to obtain a bird's eye view of the road image, and then an edge image is generated using the canny operator. In deep lane feature extraction stage, an advanced lane extraction method is proposed. Firstly, line segment detector (LSD) is applied to achieve the fast line segment detection in the IPM image. After that, a proposed adaptive lane clustering algorithm is employed to gather the adjacent line segments generated by the LSD method. Finally, a proposed local gray value maximum cascaded spatial correlation filter (GMSF) algorithm is used to extract the target lane lines among the multiple lines.
Journal Article

Passive Flow Control on a Ground-Effect Diffuser Using an Inverted Wing

2018-08-13
Abstract In this experimental and computational study a novel application of aerodynamic principles in altering the pressure recovery behavior of an automotive-type ground-effect diffuser was investigated as a means of enhancing downforce. The proposed way of augmenting diffuser downforce production is to induce in its pressure recovery action a second pressure drop and an accompanying pressure rise region close to the diffuser exit. To investigate this concept with a diffuser-equipped bluff body, an inverted wing was situated within the diffuser flow channel, close to the diffuser exit. The wing’s suction surface acts as a passive flow control device by increasing streamwise flow velocity and reducing static pressure near the diffuser exit. Therefore, a second-stage pressure recovery develops along the diffuser’s overall pressure recovery curve as the flow travels from the diffuser’s low pressure, high velocity inlet to its high pressure, low velocity exit.
X