Refine Your Search

Topic

Search Results

Journal Article

Effects of Biodiesel Blends on Particulate Matter Oxidation in a Catalyzed Particulate Filter during Active Regeneration

2010-04-12
2010-01-0557
Active regeneration experiments were performed on a production diesel aftertreatment system containing a diesel oxidation catalyst and catalyzed particulate filter (CPF) using blends of soy-based biodiesel. The effects of biodiesel on particulate matter oxidation rates in the filter were explored. These experiments are a continuation of the work performed by Chilumukuru et al., in SAE Technical Paper No. 2009-01-1474, which studied the active regeneration characteristics of the same aftertreatment system using ultra-low sulfur diesel fuel. Experiments were conducted using a 10.8 L 2002 Cummins ISM heavy-duty diesel engine. Particulate matter loading of the filter was performed at the rated engine speed of 2100 rpm and 20% of the full engine load of 1120 Nm. At this engine speed and load the passive oxidation rate is low. The 17 L CPF was loaded to a particulate matter level of 2.2 g/L.
Technical Paper

A Study of the Filtration and Oxidation Characteristics of a Diesel Oxidation Catalyst and a Catalyzed Particulate Filter

2007-04-16
2007-01-1123
An experimental and modeling study was conducted to study the passive regeneration of a catalyzed particulate filter (CPF) by the oxidation of particulate matter (PM) via thermal and Nitrogen dioxide/temperature-assisted means. Emissions data in the exhaust of a John Deere 6.8 liter, turbocharged and after-cooled engine with a low-pressure loop EGR and a diesel oxidation catalyst (DOC) - catalyzed particulate filter (CPF) in the exhaust system was measured and used for this study. A series of experiments was conducted to evaluate the performance of the DOC, CPF and DOC+CPF configurations at various engine speeds and loads.
Technical Paper

Experimental and Modeling Results Comparing Two Diesel Oxidation Catalyst - Catalyzed Particulate Filter Systems

2008-04-14
2008-01-0484
Steady-state particulate loading experiments were conducted on an advanced production catalyzed particulate filter (CPF), both with and without a diesel oxidation catalyst (DOC). A heavy-duty diesel engine was used for this study with the experiments conducted at 20, 40, 60 and 75 % of full load (1120 Nm) at rated speed (2100 rpm). The data obtained from these experiments were used and are necessary for calibrating the MTU 1-D 2-Layer CPF model. These experimental and modeling results were compared to previous research conducted at MTU that used the same engine but an earlier development version of the combination of DOC and CPF. The motivation for the comparison of the two systems was to determine whether the reformulated production catalysts performed as good or better than the early development catalysts. The results were compared to understand the filtration and oxidation differences between the two DOC+CPF and the CPF-only aftertreatment systems.
Technical Paper

A Methodology to Estimate the Mass of Particulate Matter Retained in a Catalyzed Particulate Filter as Applied to Active Regeneration and On-Board Diagnostics to Detect Filter Failures

2008-04-14
2008-01-0764
A methodology to estimate the mass of particulate retained in a catalyzed particulate filter as a function of measured total pressure drop, volumetric flow rate, exhaust temperature, exhaust gas viscosity and cake and wall permeability applicable to real-time computation is discussed. This methodology is discussed from the view point of using it to indicate when to initiate active regeneration and as an On-Board Diagnostic tool to detect filter failures. Steady-state loading characterization experiments were conducted on a catalyzed diesel particulate filter (CPF) in a Johnson Matthey CCRT® (catalyzed continuously regenerating trap) system. The experiments were performed using a 10.8 L 2002 Cummins ISM heavy-duty diesel engine. Experiments were conducted at 20, 60 and 75% of full engine load (1120 Nm) and rated speed (2100 rpm) to measure the pressure drop, transient filtration efficiency, particulate mass balance, and gaseous emissions.
Technical Paper

The Filtration, Oxidation and Pressure Drop Characteristics of a Catalyzed Particulate Filter during Active Regeneration – A 1D Modeling Study

2009-04-20
2009-01-1274
Active regeneration of a catalyzed particulate filter (CPF) is affected by a number of parameters specifically particulate matter loading and inlet temperature. The MTU 1-D 2-Layer CPF model [1] was used to analyze these effects on the pressure drop, oxidation and filtration characteristics of a CPF during active regeneration. In addition, modeling results for post loading experiments were analyzed to understand the difference between loading a clean filter as compared to a partially regenerated filter. Experimental data obtained with a production Cummins regenerative particulate filter for loading, active regenerations and post loading experiments were used to calibrate the MTU 1-D 2-Layer CPF model. The model predicted results are compared with the experimental data and were analyzed to understand the CPF characteristics during active regeneration at 1.1, 2.2 and 4.1 g/L particulate matter (PM) loading and CPF inlet temperatures of 525, 550 and 600°C.
Technical Paper

An Experimental Study of Particulate Thermal Oxidation in a Catalyzed Filter During Active Regeneration

2009-04-20
2009-01-1474
Active regeneration experiments were performed on a Cummins 2007 aftertreatment system by hydrocarbon dosing with injection of diesel fuel downstream of the turbocharger. The main objective was to characterize the thermal oxidation rate as a function of temperature and particulate matter (PM) loading of the catalyzed particulate filter (CPF). Partial regeneration tests were carried out to ensure measureable masses are retained in the CPF in order to model the oxidation kinetics. The CPF was subsequently re-loaded to determine the effects of partial regeneration during post-loading. A methodology for gathering particulate data for analysis and determination of thermal oxidation in a CPF system operating in the engine exhaust was developed. Durations of the active regeneration experiments were estimated using previous active regeneration work by Singh et al. 2006 [1] and were adjusted as the experiments progressed using a lumped oxidation model [2, 3].
Technical Paper

Experimental Study Comparing Particle Size and Mass Concentration Data for a Cracked and Un-Cracked Diesel Particulate Filter

2009-04-20
2009-01-0629
Steady state loading characterization experiments were conducted at three different engine load conditions and rated speed on the cracked catalyzed particulate filter (CPF). The experiments were performed using a 10.8 L 2002 Cummins ISM-330 heavy duty diesel engine. The CPF underwent a ring off failure, commonly seen in particulate filters, due to high radial and axial temperature gradients. The filters were cracked during baking in an oven which was done to regenerate PM collected after every loading characterization experiment. Two different configurations i.e. with and without a diesel oxidation catalyst (DOC) upstream of the CPF were studied. The data were compared with that on an un-cracked CPF at similar engine conditions and configurations. Pressure drop, transient filtration efficiency by particle size and PM mass and gaseous emissions measurements were made during each experiment.
Technical Paper

Design and Development of a Model Based Feedback Controlled Cooling System for Heavy Duty Diesel Truck Applications Using a Vehicle Engine Cooling System Simulation

2001-03-05
2001-01-0336
A thermal management system for heavy duty diesel engines is presented for maintaining acceptable and constant engine temperatures over a wide range of operational conditions. It consists of a computer controlled variable speed coolant pump, a position controlled thermostat, and a model-based control strategy. An experimentally validated, diesel engine cooling system simulation was used to demonstrate the thermal management system's capability to reduce power consumption. The controller was evaluated using a variety of operating scenarios across a wide range of loads, vehicle speeds, and ambient temperatures. Three metrics were used to assess the effects of the computer controlled system: engine temperature, energy savings, and cab temperature. The proposed control system provided very good control over the engine coolant temperatures while maintaining engine metal temperatures within a desired range.
Technical Paper

An Experimental and Numerical Study of the Performance Characteristics of the Diesel Oxidation Catalyst in a Continuously Regenerating Particulate Filter

2003-10-27
2003-01-3176
A one-dimensional model simulating the oxidation of CO, HC, and NO was developed to predict the gaseous emissions downstream of a diesel oxidation catalyst (DOC). The model is based on the conservation of mass, species, and energy inside the DOC and draws on past research literature. Steady-state experiments covering a wide range of operating conditions (exhaust temperatures, flow rates and gaseous emissions) were performed, and the data were used to calibrate and validate the model. NO conversion efficiencies of 50% or higher were obtained at temperatures between 300°C and 350°C. CO conversion efficiencies of 85% or higher and HC conversion efficiencies of 75% or higher were found at every steady state condition above 200°C. The model agrees well with the experimental results at temperatures from 200°C to 500°C, and volumetric flow rates from 8 to 42 actual m3/min.
Technical Paper

A Study of the Effect of a Catalyzed Particulate Filter on the Emissions from a Heavy-Duty Diesel Engine with EGR

2001-03-05
2001-01-0910
The effects of a catalyzed particulate filter (CPF) and Exhaust Gas Recirculation (EGR) on heavy-duty diesel engine emissions were studied in this research. EGR is used to reduce the NOx emissions but at the same time it can increase total particulate matter (TPM) emissions. CPF is technology available for retrofitting existing vehicles in the field to reduce the TPM emissions. A conventional low sulfur fuel (371 ppm S) was used in all the engine runs. Steady-state loading and regeneration experiments were performed with CPF I to determine its performance with respect to pressure drop and particulate mass characteristics at different engine operating conditions. From the dilution tunnel emission characterization results for CPF II, at Mode 11 condition (25% load - 311 Nm, 1800 rpm), the TPM, HC and vapor phase emissions (XOC) were decreased by 70%, 62% and 62% respectively downstream of the CPF II.
Technical Paper

A Controlled EGR Cooling System for Heavy Duty Diesel Applications Using the Vehicle Engine Cooling System Simulation

2002-03-04
2002-01-0076
In order to comply with 2002 EPA emissions regulations, cooled exhaust gas recirculation (EGR) will be used by heavy duty (HD) diesel engine manufacturers as the primary means to reduce emissions of nitrogen oxides (NOx). A feedforward controlled EGR cooling system with a secondary electric water pump and proportional-integral-derivative (PID) feedback has been designed to cool the recirculated exhaust gas in order to better realize the benefits of EGR without overcooling the exhaust gas since overcooling leads to the fouling of the EGR cooler with acidic residues. A system without a variable controlled coolant flow rate is not able to achieve these goals because the exhaust temperature and the EGR schedule vary significantly, especially under transient and warm-up operating conditions. Simulation results presented in this paper have been determined using the Vehicle Engine Cooling System Simulation (VECSS) software, which has been developed and validated using actual engine data.
Technical Paper

Modeling and Numerical Simulation of Diesel Particulate Trap Performance During Loading and Regeneration

2002-03-04
2002-01-1019
A 2-dimensional numerical model (MTU-FILTER) for a single channel of a honeycomb ceramic diesel particulate trap has been developed. The mathematical modeling of the filtration, flow, heat transfer and regeneration behavior of the particulate trap is described. Numerical results for the pressure drop and particulate mass were compared with existing experimental results. Parametric studies of the diesel particulate trap were carried out. The effects of trap size and inlet temperature on the trap performance are studied using the trap model. An approximate 2-dimensional analytical solution to the simplified Navier-Stokes equations was used to calculate the velocity field of the exhaust flow in the inlet and outlet channels. Assuming a similarity velocity profile in the channels, the 2-dimensional Navier-Stokes equations are approximated by 1-dimenisonal conservation equations, which is similar to those first developed by Bissett.
Technical Paper

The Dimensionless Correlation of Airflow for Vehicle Engine Cooling Systems

1991-02-01
910643
An analysis of vehicle engine cooling airflow by means of a one-dimensional, transient, compressible flow model was carried out and revealed that similarity theory could be applied to investigate the variation of the airflow with ambient and operating conditions. It was recognized that for a given vehicle engine cooling system, the cooling airflow behavior could be explained using several dimensionless parameters that involve the vehicle speed, fan speed, heat transfer rate through the radiator, ambient temperature and pressure, and the system characteristic dimension. Using the flow resistance and fan characteristics measured from a prototype cooling system and the computer simulation for the one-dimensional compressible flow model, a quantitative correlation of non-dimensional mass flow rate to three dimensionless parameters for a prototype heavy-duty truck was established. The results are presented in charts, tables, and formulas.
Technical Paper

The Theoretical Development of Vehicle Engine Cooling Airflow Models Using Incompressible Flow Methods

1991-02-01
910644
A one-dimensional incompressible flow model covering the mechanisms involved in the airflow through an automotive radiator-shroud-fan system with no heat transfer was developed. An analytical expression to approximate the experimentally determined fan performance characteristics was used in conjunction with an analytical approach for this simplified cooling airflow model, and the solution is discussed with illustrations. A major result of this model is a closed form equation relating the transient velocity of the air to the vehicle speed, pressure rise characteristics and speed of the fan, as well as the dimensions and resistance of the radiator. This provides a basis for calculating cooling airflow rate under various conditions. The results of the incompressible flow analysis were further compared with the computational results obtained with a previously developed one-dimensional, transient, compressible flow model.
Technical Paper

Development of the Enhanced Vehicle and Engine Cooling System Simulation and Application to Active Cooling Control

2005-04-11
2005-01-0697
The increasing complexity of vehicle engine cooling systems results in additional system interactions. Design and evaluation of such systems and related interactions requires a fully coupled detailed engine and cooling system model. The Vehicle Engine Cooling System Simulation (VECSS) developed at Michigan Technological University was enhanced by linking with GT-POWER for the engine/cycle analysis model. Enhanced VECSS (E-VECSS) predicts the effects of cooling system performance on engine performance including accessory power and fuel conversion efficiency. Along with the engine cycle, modeled components include the engine manifolds, turbocharger, radiator, charge-air-cooler, engine oil circuit, oil cooler, cab heater, coolant pump, thermostat, and fan. This tool was then applied to develop and simulate an actively controlled electric cooling system for a 12.7 liter diesel engine.
Technical Paper

A Computer Simulation of the Turbocharged Diesel Engine as an Enhancement of the Vehicle Engine Cooling System Simulation

1997-05-19
971804
A computer simulation of the turbocharged direct- injection diesel engine was developed to enhance the capabilities of the Vehicle Engine Cooling System Simulation (VECSS) developed at Michigan Technological University. The engine model was extensively validated against Detroit Diesel Corporation's (DDC) Series 60 engine data. In addition to the new engine model a charge-air-cooler model was developed and incorporated into the VECSS. A Freightliner truck with a Detroit Diesel's Series 60 engine, Behr McCord radiator, AlliedSignal/Garrett Automotive charge air cooler, Kysor DST variable speed fan clutch and other cooling system components was used for the study. The data were collected using the Detroit Diesel Electronic Controls (DDEC)-Electronic Control Module (ECM) and Hewlett Packard data acquisition system. The enhanced model's results were compared to the steady state TTD (top tank differential) data.
Technical Paper

A Study of the Regeneration Process in Diesel Particulate Traps Using a Copper Fuel Additive

1996-02-01
960136
The goals of this research are to understand the regeneration process in ceramic (Cordierite) monolith traps using a copper fuel additive and to investigate the various conditions that lead to trap regeneration failure. The copper additive lowers the trap regeneration temperature from approximately 500 °C to 375 °C and decreases the time necessary for regeneration. Because of these characteristics, it is important to understand the effect of the additive on regeneration when excessive particulate matter accumulation occurs in the trap. The effects of particulate mass loading on regeneration temperatures and regeneration time were studied for both the controlled (engine operated at full load rated speed) and uncontrolled (trap regeneration initiated at full load rated speed after which the engine was cut to idle) conditions. The trap peak temperatures were higher for the uncontrolled than the controlled regeneration.
Technical Paper

A Theoretical and Experimental Study of the Regeneration Process in a Silicon Carbide Particulate Trap Using a Copper Fuel Additive

1997-02-24
970188
The purpose of this study was to investigate the pressure drop and regeneration characteristics of a silicon carbide (SiC) wall-flow diesel particulate filter. The performance of a 25 μm mean pore size SiC dual trap system (DTS) consisting of two 12 liter traps connected in parallel in conjunction with a copper (Cu) fuel additive was evaluated. A comparison between the 25 μm DTS and a 15 μm DTS was performed, in order to show the effect of trap material mean pore size on trap loading and regeneration behavior. A 1988 Cummins LTA 10-300 diesel engine was used to evaluate the performance of the 15 and 25 μm DTS. A mathematical model was developed to better understand the thermal and catalytic oxidation of the particulate matter. For all the trap steady-state loading tests, the engine was run at EPA mode 11 for 10 hours. Raw exhaust samples were taken upstream and downstream of the trap system in order to determine the DTS filtration efficiency.
Technical Paper

An Experimental and Computational Study of the Pressure Drop and Regeneration Characteristics of a Diesel Oxidation Catalyst and a Particulate Filter

2006-04-03
2006-01-0266
An experimental and computational study was performed to evaluate the performance of the CRT™ technology with an off-highway engine with a cooled low pressure loop EGR system. The MTU-Filter 1D DPF code predicts the particulate mass evolution (deposition and oxidation) in a diesel particulate filter (DPF) during simultaneous loading and during thermal and NO2-assisted regeneration conditions. It also predicts the pressure drop across the DPF, the flow and temperature fields, the solid filtration efficiency and the particle number distribution downstream of the DPF. A DOC model was also used to predict the NO2 upstream of the DPF. The DPF model was calibrated to experimental data at temperatures from 230°C to 550°C, and volumetric flow rates from 9 to 39 actual m3/min.
X