Refine Your Search

Search Results

Viewing 1 to 15 of 15
Technical Paper

Evaluation and Optimization of Measurements of Flame Kernel Growth and Motion Using a Fiber-Optic Spark Plug Probe

1998-05-04
981427
Spark plugs instrumented with a ring of optical fibers in the threaded-body region have seen considerable use in the past ten years, and it is expected that their application to unmodified production engines will increase in the years to come. Interpretation of the optical signals obtained with the probe is often difficult, particularly under lean operating conditions where the low luminosity of the flame leads to imprecise flame arrival detection. A systematic look at the optical signals, along with direct imaging of the flame, has been undertaken to calibrate and optimize the determination of flame arrival times. In addition, an evaluation of the different models available for the analysis of the flame arrival data is made. Data fits are compared with real flame images, to determine which model best estimates the convective velocity of the flow and the expansion speed of the flame kernel.
Technical Paper

Real-Time Measurement of the Volatile Fraction of Diesel Particulate Matter Using Laser-Induced Desorption with Elastic Light Scattering (LIDELS)

2002-05-06
2002-01-1685
A new diagnostic technique is described that has the capability of making real-time, in situ measurements of the volatile fraction of diesel particulate matter (PM). LIDELS uses two laser pulses of comparable energy, separated in time by an interval sufficiently short to freeze the flow field, to measure the change in PM volume caused by laser-induced desorption of the volatile fraction. The first laser pulse produces elastic light scattering (ELS) that gives the volume of the total PM, and also deposits the energy to desorb the volatiles. ELS from the second pulse gives the volume of the remaining solid portion of the PM, and the ratio of these two measurements is the quantitative solid volume fraction. Calibration is required for the individual total PM and solid fraction to be quantitative. Applicability of the technique is demonstrated for load and EGR sweeps for a turbocharged, direct-injection diesel engine.
Technical Paper

Investigation of In-cylinder Fluid Motion Using a Head Gasket Instrumented with Ionization Probes

1991-02-01
910719
Ionization probes installed in the head gasket of an engine have been used to infer the shape of the burned volume from measurements of when the flame contacts the gasket. It is demonstrated that the technique can be extended to infer fluid motion by using one of the ionization probes as the ignition site, with the ensuing flame serving as a flow marker. It is shown that swirl motion, and its direction, can be detected, and that flame propagation velocities can be measured. A comparison of estimated swirl velocities with laser Doppler velocimeter measurements show remarkably good agreement. The most valuable feature of the technique is that it can be applied to any production engine without modification.
Technical Paper

Cycle-Resolved Measurements of Flame Kernel Growth and Motion Correlated with Combustion Duration

1990-02-01
900023
A recently developed spark plug equipped with fiber-optic flame-arrival detectors has been used to measure the motion and rate of growth of the early flame kernel. The cylinder pressure and gas velocity in the spark gap were measured simultaneously with the flame kernel measurements, permitting the data to be analyzed on a cycle-by-cycle basis to identify cause-and-effect correlations between the measured parameters. The data were obtained in a homogeneous-charge research engine that could be modified to produce three very different flow fields: (1) high swirl with high turbulence intensity, (2) tumble vortex with moderate turbulence intensity, and (3) negligible bulk motion with low turbulence intensity. The results presented show a moderate correlation between the combustion duration and the rate of growth of the flame kernel, but virtually no correlation with either the magnitude or direction of movement of the flame kernel away from the spark gap.
Technical Paper

In-Cylinder Gas Velocity Measurements Comparing Crankcase and Blower Scavenging in a Fired Two-Stroke Cycle Engine

1994-03-01
940401
The in-cylinder flow field of a Schnürle (loop) scavenged two-stroke engine has been examined under conditions simulating both blower and crankcase driven scavenging. Measurements of the radial component of velocity were obtained along the cylinder centerline during fired operation at delivery ratios of 0.4, 0.6, and 0.8. Both mean velocity profiles and root mean square velocity fluctuations near top center show a strong dependence on the scavenging method. Complementary in-cylinder pressure measurements indicate that combustion performance is better under blower driven scavenging for the engine geometry studied. IN THE PAST TEN YEARS the engine research and development community has demonstrated a renewed interest in two-stroke engine technology. Many manufacturers have new engine designs operating on test stands and in prototype vehicles being road tested.
Technical Paper

Dual-Laser LIDELS: An Optical Diagnostic for Time-Resolved Volatile Fraction Measurements of Diesel Particulate Emissions

2005-10-24
2005-01-3791
Double-pulse laser-induced desorption with elastic laser scattering (LIDELS) is a diagnostic technique capable of making time-resolved, in situ measurements of the volatile fraction of diesel particulate matter (PM). The technique uses two laser pulses of comparable energy, separated in time by an interval sufficiently short to freeze the flow field, to measure the change in PM volume caused by laser-induced desorption of the volatile fraction. The first laser pulse of a pulse-pair produces elastic laser scattering (ELS) that gives the total PM volume, and also deposits the energy to desorb the volatiles. ELS from the second pulse gives the volume of the remaining solid portion of the PM, and the ratio of these two measurements is the quantitative solid volume fraction. In an earlier study, we used a single laser to make real-time LIDELS measurements during steady-state operation of a diesel engine.
Technical Paper

Comparison of Single and Dual Spray Fuel Injectors During Cold Start of a PFI Spark Ignition Engine Using Visualization of Liquid Fuel Films and Pool Fires

2005-10-24
2005-01-3863
Video imaging has been used to investigate the evolution of liquid fuel films on combustion chamber walls during a simulated cold start of a port fuel-injected engine. The experiments were performed in a single-cylinder research engine with a production, four-valve head and a window in the piston crown. Flood-illuminated laser-induced fluorescence was used to observe the fuel films directly, and color video recording of visible emission from pool fires due to burning fuel films was used as an indirect measure of film location. The imaging techniques were applied to a comparative study of single and dual spray fuel injectors for both open and closed valve injection, for coolant temperatures of 20, 40 and 60°C. In general, for all cases it is shown that fuel films form in the vicinity of the intake valve seats.
Technical Paper

Stroboscopic Laser Shadowgraph Study of the Effect of Swirl on Homogeneous Combustion in a Spark-Ignition Engine

1981-02-01
810226
A photographic study is presented illustrating the influence of mixture motion on flame propagation in an internal combustion engine. Variation in swirl and turbulence levels was achieved by rotating the orientation of a shroud on the intake valve. Laser Doppler velocimetry was used to characterize the precombustion fluid motion. A flexible shadowgraph system was developed for visualizing in-cylinder events. The results show that cyclic variation is not necessarily decreased by increasing the burn rate. The fastest burn achieved in this study occurred with high swirl, when the flame remained attached to the spark plug. If random detachment of the flame occurred, however, cyclic variation was greatly enhanced.
Technical Paper

A Critical Comparison of Hot-Wire Anemometry and Laser Doppler Velocimetry for I. C. Engine Applications

1980-02-01
800132
Hot-wire anemometer and laser Doppler velocimeter measurements have been taken in a motored reciprocating engine and compared to assess the validity of hot-wire measurements. The procedure used to account for the sensitivity of the hot wire to changes in the gas temperature is extensively investigated. The results presented show that for the optimum conditions of known flow direction, low turbulence level, and low compression ratio, the hot-wire anemometer can provide useful mean velocity results. Accurate hot-wire turbulence intensity measurements appear to be possible only for the intake and exhaust strokes.
Technical Paper

The Effect of Spark Location on Combustion in a Variable-Swirl Engine

1982-02-01
820044
Measurements are presented showing the effect of swirl level and spark location on burn duration in a homogeneous-charge engine. Laser shadowgraph photographs of the flame structure were used to help interpret the observed results. As expected, without swirl the burn duration was a direct function of flame travel distance, such that central ignition was optimal. When swirl was introduced, off-axis ignition was aided by flame-holder effects that enhanced the flame speed in the circumferential direction. However, only for the highest swirl level studied (swirl number = 8.3) was the burn rate increased by moving the ignition point toward the cylinder wall. For lower swirl levels, central ignition was still preferable.
Technical Paper

Measurements of the Spatial Distribution and Engine Speed Dependence of Turbulent Air Motion in an I.C. Engine

1977-02-01
770220
A hot-wire anemometer was used to study the air motion in a motored i.c. engine. Measurements were made of the mean velocity, turbulence intensity, and integral scales of turbulence. The engine speed was varied from 500 to 2500 rpm, and the hot-wire probe was traversed both across the combustion chamber clearance volume and down into the piston sweep volume. The latter traverse was accomplished by probe-accommodating “wells” built into the piston crown, which were subsequently shown to severely disrupt the flow during the compression and expansion strokes. The results show the mean velocity and turbulence intensity to vary linearly with engine speed, and the turbulence scales to be a function of geometry only. The structure of turbulence was found to be inhomogeneous in the clearance volume and the upper portion of the sweep volume.
Technical Paper

Fiber-Optic Instrumented Spark Plug for Measuring Early Flame Development in Spark Ignition Engines

1988-10-01
881638
An optical probe for measuring the motion and rate of growth of the early flame kernel in spark ignition engines is described. The probe consists of a standard spark plug with eight optical fibers installed in a ring at the base of the threaded region of the plug. The fibers collect the light emitted from the flame as it crosses the field of view of the fibers, and transmit the light to photomultiplier tubes. The time from ignition until detection of the flame is used to compute the average flame velocity in the direction of each fiber relative to the spark location. The real-time data acquisition system permits statistical analysis of cycle-by-cycle variations in the combustion rate. Because the probe was built using a standard 14 mm spark plug, it can be used in unmodified production automotive engines.
Technical Paper

Cycle-Resolved Multipoint Ionization Probe Measurements in a Spark Ignition Engine

1989-09-01
892099
Ionization probes installed in the head gasket of a spark ignition engine are used to measure the cycle-resolved arrival time of the flame at eight discrete points at the perimeter of the cylinder bore. Simultaneous data acquisition of the ionization probe and cylinder pressure measurements permits the flame burn pattern, the combustion rate, and the cyclic variability of these quantities to be observed on a video monitor m real-time as engine operating parameters are varied. To demonstrate the technique, measurements are presented for uniformly-spaced and clustered arrangements of ionization probes and differing conditions of fluid motion, spark location, spark plug configuration, and equivalence ratio.
Technical Paper

Velocity Measurements in the Wall Boundary Layer of a Spark-Ignited Research Engine

1987-11-01
872105
Laser Doppler velocimetry has been used to measure velocity and turbulence intensity profiles in the wall boundary layer of a spark-ignited homogeneous-charge research engine. By using a toroidal contoured engine head it was possible to bring the laser probe volume to within 60 μm of the wall. Two different levels of engine swirl were used to vary the flow Reynolds number. For the high swirl case under motored operation the boundary layer thickness was less than 200 μm, and the turbulence intensity increased as the wall was approached. With low swirl the 700-1000 μm thick boundary layer had a velocity profile that was nearly laminar in shape, and there was no increase in turbulence intensity near the wall. When the engine was fired the boundary layer thickness increased for both levels of swirl.
Technical Paper

Diagnostics for the Study of Cold Start Mixture Preparation in a Port Fuel-Injected Engine

1999-03-01
1999-01-1108
A variety of diagnostic techniques useful for the study of cold start phenomena are presented. Although the tools are demonstrated in a port fuel-injected engine, they are also suitable for direct-injection gasoline engines. A very useful technique, seemingly forgotten in the literature (and applicable to diesel engines as well), is the use of a short focal-length lens inside a Bowditch piston to expand the field-of-view. Rather than being limited by the clear aperture of the window in the piston, this technique permits the entire combustion chamber and the top section of the cylinder liner to be seen. Results using this technique are presented for the imaging of pool fires and laser-induced fluorescence of fuel films.
X