Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Spray Characterization of Ethanol Gasoline Blends and Comparison to a CFD Model for a Gasoline Direct Injector

2010-04-12
2010-01-0601
Operation of flex fuel vehicles requires operation with a range of fuel properties. The significant differences in the heat of vaporization and energy density of E0-E100 fuels and the effect on spray development need to be fully comprehended when developing engine control strategies. Limited enthalpy for fuel vaporization needs to be accounted for when developing injection strategies for cold start, homogeneous and stratified operation. Spray imaging of multi-hole gasoline injectors with fuels ranging from E0 to E100 and environmental conditions that represent engine operating points from ambient cold start to hot conditions was performed in a spray chamber. Schlieren visualization technique was used to characterize the sprays and the results were compared with Laser Mie scattering and Back-lighting technique. Open chamber experiments were utilized to provide input and validation of a CFD model.
Journal Article

Experimental Investigation of the Interaction of MultipleGDI Injections using Laser Diagnostics

2010-04-12
2010-01-0596
In present GDI engines, multiple injection strategies are often employed for engine cold start mixture formation. In the future, these strategies may also be used to control the combustion process, and to prevent misfiring or high emission levels. While the processes occurring during individual injections of GDI injectors have been investigated by a number of researchers, this paper concentrates on the interactions of multiple injection events. Even though multiple injection strategies are already applied in most GDI engines, the impact of the first injection event on the second injection event has not been analyzed in detail yet. Different optical measurement techniques are used in order to investigate the interaction of the two closely timed injection events, as well as the effect of dwell time and the in-cylinder conditions. The injector investigated is a GDI piezo injector with an outwardly opening needle.
Journal Article

Effects of Fuel Cell Material Properties on Water Management Using CFD Simulation and Neutron Imaging

2010-04-12
2010-01-0934
Effects of fuel cell material properties on water management were numerically investigated using Volume of Fluid (VOF) method in the FLUENT. The results show that the channel surface wettability is an important design variable for both serpentine and interdigitated flow channel configurations. In a serpentine air flow channel, hydrophilic surfaces could benefit the reactant transport to reaction sites by facilitating water transport along channel edges or on channel surfaces; however, the hydrophilic surfaces would also introduce significantly pressure drop as a penalty. For interdigitated air flow channel design, it is observable that liquid water exists only in the outlet channel; it is also observable that water distribution inside GDL is uneven due to the pressure distribution caused by interdigitated structure. An in-situ water measurement method, neutron imaging technique, was used to investigate the water behavior in a PEM fuel cell.
Journal Article

Characterization of Engine Control Authority on HCCI Combustion as the High Load Limit is Approached

2013-04-08
2013-01-1665
In this study the authority of the available engine controls are characterized as the high load limit of homogeneous charge compression ignition (HCCI) combustion is approached. A boosted single-cylinder research engine is used and is equipped with direct injection (DI) fueling, a laboratory air handling system, and a hydraulic valve actuation (HVA) valve train to enable negative valve overlap (NVO) breathing. Results presented include engine loads from 350 to 650 kPa IMEPnet and manifold pressure from 98 to 190 kPaa. It is found that in order to increase engine load to 650 kPa IMEPnet, it is necessary to increase manifold pressure and external EGR while reducing the NVO duration. While both are effective at controlling combustion phasing, NVO duration is found to be a "coarse" control while fuel injection timing is a "fine" control.
Journal Article

Development of a Gasoline Direct Injection Compression Ignition (GDCI) Engine

2014-04-01
2014-01-1300
In previous work, Gasoline Direct Injection Compression Ignition (GDCI) has demonstrated good potential for high fuel efficiency, low NOx, and low PM over the speed-load range using RON91 gasoline. In the current work, a four-cylinder, 1.8L engine was designed and built based on extensive simulations and single-cylinder engine tests. The engine features a pent roof combustion chamber, central-mounted injector, 15:1 compression ratio, and zero swirl and squish. A new piston was developed and matched with the injection system. The fuel injection, valvetrain, and boost systems were key technology enablers. Engine dynamometer tests were conducted at idle, part-load, and full-load operating conditions. For all operating conditions, the engine was operated with partially premixed compression ignition without mode switching or diffusion controlled combustion.
Technical Paper

Active Fuelling of a Passenger Car Sized Pre-Chamber Ignition System with Gaseous Components of Gasoline

2020-09-15
2020-01-2045
Homogeneous lean or diluted combustion can significantly increase the efficiency of spark ignition engines. Active fuelled pre-chamber ignition systems can overcome the problem that common spark ignitions systems are incapable to ignite strongly diluted mixtures. A small portion of the charge is burned in a separated chamber, which is connected to the main chamber by multiple small orifices. The combustion inside the pre-chamber generates hot gases, which penetrate into the main chamber and ignite the diluted charge on multiple sites. Active pre-chamber ignition systems feature a separate fuelling or scavenging system in addition to the one of the main combustion chambers. Preferably, gaseous fuel is used for the pre-chamber fuelling allowing better dosing accuracy and mixture preparation inside the pre-chamber.
Technical Paper

Influence of Nozzle Geometry Parameters on the Propagation of Fuel Spray Investigated with Linear and Non-Linear Regression Models

2020-09-15
2020-01-2114
The nozzle geometry of fuel injectors has a strong influence on turbulences and pressure gradients within the nozzle flow. The flow situation at the nozzle outlet determines the spray propagation into the ambient atmosphere. This spray penetration is critical for gasoline direct injection (GDI) systems. When the spray penetration is too high, it can cause wall and cylinder impingement, which increases particle emissions drastically. However, prediction of fuel spray propagation in dependency of nozzle hole geometry is difficult due to the large difference in scale between the nozzle flow and the spray development. Because of this, spray measurements with varying nozzle geometry parameters and statistical evaluation of these datasets are useful for the future development of fuel injectors. In this study, shadowgraphy measurements of real-size single-hole glass nozzles are presented. The nozzles cover a wide range of geometry parameters relevant to a GDI system.
Journal Article

Time-resolved X-ray Tomography of Gasoline Direct Injection Sprays

2015-09-01
2015-01-1873
Quantitative measurements of direct injection fuel spray density and mixing are difficult to achieve using optical diagnostics, due to the substantial scattering of light and high optical density of the droplet field. For multi-hole sprays, the problem is even more challenging, as it is difficult to isolate a single spray plume along a single line of sight. Time resolved x-ray radiography diagnostics developed at Argonne's Advanced Photon Source have been used for some time to study diesel fuel sprays, as x-rays have high penetrating power in sprays and scatter only weakly. Traditionally, radiography measurements have been conducted along any single line of sight, and have been applied to single-hole and group-hole nozzles with few plumes. In this new work, we extend the technique to multi-hole gasoline direct injection sprays.
Technical Paper

Durability Study of a Light-Duty High Pressure Common Rail Fuel Injection System Using E10 Gasoline

2020-04-14
2020-01-0616
A 500-hour test cycle has been used to evaluate the durability of a prototype high pressure common rail injection system operating up to 1800 bar with E10 gasoline. Some aspects of the original diesel based hardware design were optimized in order to accommodate an opposed-piston, two-stroke engine application and also to mitigate the impacts of exposure to gasoline. Overall system performance was maintained throughout testing as fueling rate and rail pressure targets were continuously achieved and no physical damage was observed in the low-pressure components. Injectors showed no deviation in their flow characteristics after exposure to gasoline and high resolution imaging of the nozzle spray holes and pilot valve assemblies did not indicate the presence of cavitation damage. The high pressure pump did not exhibit any performance degradation during gasoline testing and teardown analysis after 500 hours showed no evidence of cavitation erosion.
Technical Paper

Transient Internal Nozzle Flow in Transparent Multi-Hole Diesel Injector

2020-04-14
2020-01-0830
An accurate prediction of internal nozzle flow in fuel injector offers the potential to improve predictions of spray computational fluid dynamics (CFD) in an engine, providing a coupled internal-external calculation or by defining better rate of injection (ROI) profile and spray angle information for Lagrangian parcel computations. Previous research has addressed experiments and computations in transparent nozzles, but less is known about realistic multi-hole diesel injectors compared to single axial-hole fuel injectors. In this study, the transient injector opening and closing is characterized using a transparent multi-hole diesel injector, and compared to that of a single axial hole nozzle (ECN Spray D shape). A real-size five-hole acrylic transparent nozzle was mounted in a high-pressure, constant-flow chamber. Internal nozzle phenomena such as cavitation and gas exchange were visualized by high-speed long-distance microscopy.
Technical Paper

Analysis of the Spray Numerical Injection Modeling for Gasoline Applications

2020-04-14
2020-01-0330
The modeling of fuel jet atomization is key in the characterization of Internal Combustion (IC) engines, and 3D Computational Fluid Dynamics (CFD) is a recognized tool to provide insights for design and control purposes. Multi-hole injectors with counter-bored nozzle are the standard for Gasoline Direct Injection (GDI) applications and the Spray-G injector from the Engine Combustion Network (ECN) is considered the reference for numerical studies, thanks to the availability of extensive experimental data. In this work, the behavior of the Spray-G injector is simulated in a constant volume chamber, ranging from sub-cooled (nominal G) to flashing conditions (G2), validating the models on Diffused Back Illumination and Phase Doppler Anemometry data collected in vaporizing inert conditions.
Journal Article

HCCI Load Expansion Opportunities Using a Fully Variable HVA Research Engine to Guide Development of a Production Intent Cam-Based VVA Engine: The Low Load Limit

2012-04-16
2012-01-1134
While the potential emissions and efficiency benefits of HCCI combustion are well known, realizing the potentials on a production intent engine presents numerous challenges. In this study we focus on identifying challenges and opportunities associated with a production intent cam-based variable valve actuation (VVA) system on a multi-cylinder engine in comparison to a fully flexible, naturally aspirated, hydraulic valve actuation (HVA) system on a single-cylinder engine, with both platforms sharing the same GDI fueling system and engine geometry. The multi-cylinder production intent VVA system uses a 2-step cam technology with wide authority cam phasing, allowing adjustments to be made to the negative valve overlap (NVO) duration but not the valve opening durations. On the single-cylinder HVA engine, the valve opening duration and lift are variable in addition to the NVO duration. The content of this paper is limited to the low-medium operating load region at 2000 rpm.
Journal Article

Investigation of Fuel Atomization and Evaporation of a DISI Injector Spray Under Homogeneous Charge Conditions

2013-04-08
2013-01-1597
Understanding the causal loop from injection to combustion in modern direct injection engines is essential to improve combustion and reduce emissions. In this work, the section from injection to fuel-evaporation in this causal loop was investigated using different optical measurement techniques, with a focus on drop size measurements using Phase Doppler Anemometry (PDA). One spray jet of a modern DISI multi-hole injector was investigated using gasoline RON 95 fuel and two single component alkane fuels (n-hexane / n-decane). In a first step the macroscopic spray formation and propagation of this spray jet were studied using a 2D-Mie-scattering technique in an optical injection chamber at homogenous charge DISI conditions. Furthermore, the droplet size distribution and mean diameter were determined spatially and temporally resolved for an ambient pressure of 0.3MPa and different ambient temperature (323K / 423K / 523K) conditions in the optical chamber using Phase Doppler Anemometry.
Journal Article

Large Eddy Simulation of GDI Single-Hole Flow and Near-Field Spray

2012-04-16
2012-01-0392
The improvement of spray atomization and penetration characteristics of GDI multi-hole injector sprays is a major component of the engine combustion developments, in order to achieve the fuel economy and emissions standards. Significant R&D efforts are directed towards optimization of the nozzle designs, in order to achieve optimum multi-objective spray characteristics. The Volume-of-Fluid Large-Eddy-Simulation (VOF-LES) of the injector internal flow and spray break-up processes offers a computational capability to aid development of a fundamental knowledge of the liquid jet breakup process. It is a unique simulation method capable of simultaneous analysis of the injector nozzle internal flow and the near-field jet breakup process. Hence it provides a powerful toll to investigate the influence of nozzle design parameters on the spray geometric and atomization features and, consequently, reduces reliance on hardware trial-and-tests for multi-objective spray optimizations.
Journal Article

Investigation of Fuel Effects on Spray Atomization and Evaporation Studied for a Multi-hole DISI Injector with a Late Injection Timing

2011-08-30
2011-01-1982
The influence of fuel composition on sprays was studied in an injection chamber at DISI conditions with late injection timing. Fuels with high, mid and low volatility (n-hexane, n-heptane, n-decane) and a 3-component mixture with similar fuel properties like gasoline were investigated. The injection conditions were chosen to model suppressed or rapid evaporation. Mie scattering imaging and phase Doppler anemometry were used to investigate the liquid spray structure. A spray model was set up applying the CFD-Code OpenFOAM. The atomization was found to be different for n-decane that showed a smaller average droplet size due to viscosity dependence of injected mass. And for evaporating conditions, a stratification of the vapor components in the 3-component fuel spray was observed.
Journal Article

Evaluation of Shot-to-Shot In-Nozzle Flow Variations in a Heavy-Duty Diesel Injector Using Real Nozzle Geometry

2018-04-03
2018-01-0303
Cyclic variability in internal combustion engines (ICEs) arises from multiple concurrent sources, many of which remain to be fully understood and controlled. This variability can, in turn, affect the behavior of the engine resulting in undesirable deviations from the expected operating conditions and performance. Shot-to-shot variation during the fuel injection process is strongly suspected of being a source of cyclic variability. This study focuses on the shot-to-shot variability of injector needle motion and its influence on the internal nozzle flow behavior using diesel fuel. High-speed x-ray imaging techniques have been used to extract high-resolution injector geometry images of the sac, orifices, and needle tip that allowed the true dynamics of the needle motion to emerge. These measurements showed high repeatability in the needle lift profile across multiple injection events, while the needle radial displacement was characterized by a much higher degree of randomness.
Journal Article

Experimental and Computational Investigation of Subcritical Near-Nozzle Spray Structure and Primary Atomization in the Engine Combustion Network Spray D

2018-04-03
2018-01-0277
In order to improve understanding of the primary atomization process for diesel-like sprays, a collaborative experimental and computational study was focused on the near-nozzle spray structure for the Engine Combustion Network (ECN) Spray D single-hole injector. These results were presented at the 5th Workshop of the ECN in Detroit, Michigan. Application of x-ray diagnostics to the Spray D standard cold condition enabled quantification of distributions of mass, phase interfacial area, and droplet size in the near-nozzle region from 0.1 to 14 mm from the nozzle exit. Using these data, several modeling frameworks, from Lagrangian-Eulerian to Eulerian-Eulerian and from Reynolds-Averaged Navier-Stokes (RANS) to Direct Numerical Simulation (DNS), were assessed in their ability to capture and explain experimentally observed spray details. Due to its computational efficiency, the Lagrangian-Eulerian approach was able to provide spray predictions across a broad range of conditions.
Journal Article

Quantification of Shot-to-Shot Variation in Single Hole Diesel Injectors

2015-04-14
2015-01-0936
Recent advancements in x-ray radiography diagnostics for direct injection sprays at Argonne's Advanced Photon Source have allowed absorption measurements of individual spray events, in addition to ensemble-averaged measurements. These measurements offer insight into the shot-to-shot variation of these sprays in the near-nozzle, spray formation region. Three single hole diesel injectors are studied across various injection and ambient pressures, spanning 14 different conditions. We calculated two dimensional maps of the standard deviation in line of sight mass distribution between individual spray events. These illuminated the spatial and temporal extent of variability between spray events. Regions of large fluctuations were observed to move downstream during the initial spray period and reached a steady state location after this initial transient.
Technical Paper

Characteristics and Application of Gasoline Injectors to SI Engines by Means of Measured Liquid Fuel Distributions

1997-10-01
972947
The spray formation of two different gasoline port fuel injectors has been studied in three stages of the mixture formation process using measured liquid fuel distributions. The injector characteristics were determined in fundamental chamber experiments providing the time dependent spray penetration and the internal structure of the spray in quiescent air by a laser light sheet technique. For the sane injectors the interaction between port flow and spray was investigated inside the port of a production engine. A strong dependence of the fuel distribution inside the port on the engine operation point was found for both injectors. This fuel distribution provides information on wall film generation and the optimum orientation of the injector inside the suction pipe.
Technical Paper

Determination of Diesel Spray Axial Velocity Using X-Ray Radiography

2007-04-16
2007-01-0666
Present knowledge of the velocity of the fuel in diesel sprays is quite limited due to the obscuring effects of fuel droplets, particularly in the high-density core of the spray. In recent years, x-ray radiography, which is capable of penetrating dense fuel sprays, has demonstrated the ability to probe the structure of the core of the spray, even in the dense near-nozzle region. In this paper, x-ray radiography data was used to determine the average axial velocity in diesel sprays as a function of position and time. Here, we report the method used to determine the axial velocity and its application to three common-rail diesel sprays at 250 bar injection pressure. The data show that the spray velocity does not reach its steady state value near the nozzle until approximately 200 μs after the start of injection. Moreover, the spray axial velocity decreases as one moves away from the spray orifice, suggesting transfer of axial momentum to the surrounding ambient gas.
X