Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Design Analysis of High Power Density Additively Manufactured Induction Motor

2016-09-20
2016-01-2061
Induction machines (IM) are considered work horse for industrial applications due to their rugged, reliable and inexpensive nature; however, their low power density restricts their use in volume and weight limited environments such as an aerospace, traction and propulsion applications. Given recent advancements in additive manufacturing technologies, this paper presents opportunity to improve power density of induction machines by taking advantage of higher slot fill factor (SFF) (defined as ratio of bare copper area to slot area) is explored. Increase in SFF is achieved by deposition of copper in much more compact way than conventional manufacturing methods of winding in electrical machines. Thus a design tradeoff study for an induction motor with improved SFF is essential to identify and highlight the potentials of IM for high power density applications and is elaborated in this paper.
Standard

CABIN CONNECTORS AND CABLES, PART 4, STANDARD TEST METHODOLOGY

2020-07-13
CURRENT
ARINC800P4-1
ARINC 800 is the first industry standard intended for characterization of aviation-grade high-speed (Gbps) Ethernet links. The test methods are based on realistic representation of cabin networks. The notional cabling architecture is based on IFE seat distribution using multiple intermediate disconnects. Sequential testing is supported by building up number of connectors in the link. Test guidelines for mixed intermediate cable lengths are provided.
Standard

FIBER OPTIC TEST PROCEDURES

2019-01-28
CURRENT
ARINC805-5
This document defines general practices for testing the physical layer of a fiber optic cable system. It is the intention of this document to outline proven practices for engineers and technicians engaged in testing and supporting fiber optic cable systems in aircraft. This document defines general practices for testing the physical layer of a fiber optic cable system. It is the intention of this document to outline proven practices for engineers and technicians engaged in testing and supporting fiber optic cable systems in aircraft.
Standard

Training Program Guidelines for Deicing/Anti-Icing of Aircraft on Ground-Digital Annex

2019-09-11
CURRENT
ARP5149CDA
This Digital Annex (DA) contains the current, full-PDF version of ARP5149B, Training Program Guidelines for Deicing/Anti-Icing of Aircraft on Ground, as well as .jpeg format files of Appendix D, Application Guidelines Configuration, Critical Component, and Spray Area Diagrams for Aircraft. The .jpeg diagram files may be used by purchasers in accordance with the terms of the included license agreement.
Collection

Brake Technology, 2010

2010-06-01
This technical paper collection includes 8 papers from OEMs, suppliers, and academia detailing current brake engineering issues and technology. Topics covered include: NVH, controls, modeling, testing, brake drag, and hardware-in-the-loop evaluations.
Video

Real-time Tire Imbalance Detection Using ABS Wheel Speed Sensors

2011-11-15
This presentation proposes an approach to use ABS wheel speed sensor signals together with other vehicle state information from a brake control module to detect an unbalanced tire or tires in real-time. The proposed approach consists of two-stage algorithms that mix a qualitative method using band-pass filtering with a quantitative parameter identification using conditional least squares. This two-stage approach can improve the robustness of tire imbalance or imbalances. The proposed approach is verified through vehicle testing and the test results show the effectiveness of the approach. Presenter Jianbo Lu, Ford Motor Co.
Video

Development of an Electrically-driven Intelligent Brake Unit

2012-02-16
An electrically-driven, intelligent brake unit has been developed, to be combined with a regenerative braking system in electric vehicles (EVs) and hybrid electric vehicles (HEVs) which went into production in 2010 - 11. The brake pedal force is assisted by an electrically driven motor, without using vacuum pressure, unlike conventional braking systems. The actuator can be implemented to coordinate with a regenerative braking system, and to have adjustable pedal feel through use of a unique pressure-generating mechanism and a pedal-force compensator. In this paper, we describe features of the actuator mechanism and performance test results Presenter Yukio Ohtani, Hitachi Automotive Systems
Video

A Method for Testing GPS in Obstructed Environments Where GPS/INS Reference Systems Can Be Ineffective

2011-11-17
When vehicles share certain information wirelessly via Dedicated Short Range Communications (DSRC), they enable a new layer of electronic vehicle safety that, when needed, can generate warnings to drivers and even initiate automatic preventive actions. Vehicle location and velocity provided by Global Navigation Systems (GNSS), including GPS, are key in allowing vehicle path estimation. GNSS is effective in accurately determining a vehicle's location coordinates in most driving environments, but its performance suffers from obstructions in dense urban environments. To combat this, augmentations to GNSS are being contemplated and tested. This testing has been typically done using a reference GNSS system complimented by expensive military-grade inertial sensors, which can still fail to provide adequate reference performance in certain environments.
Video

Technical Keynote: State-of-Art of Moire Method and Applications to Shape, Displacement and Strain Measurement

2011-11-17
Virtual testing is a method that simulates lab testing using multi-body dynamic analysis software. The main advantages of this approach include that the design can be evaluated before a prototype is available and virtual testing results can be easily validated by subsequent physical testing. The disadvantage is that accurate specimen models are sometimes hard to obtain since nonlinear components such as tires, bushings, dampers, and engine mounts are hard to model. Therefore, virtual testing accuracy varies significantly. The typical virtual rigs include tire and spindle coupled test rigs for full vehicle tests and multi axis shaker tables for component tests. Hybrid simulation combines physical and virtual components, inputs and constraints to create a composite simulation system. Hybrid simulation enables the hard to model components to be tested in the lab.
Video

Flexible Real-Time Simulation of Truck and Trailer Configurations

2011-12-05
Real-time simulation of truck and trailer combinations can be applied to hardware-in-the-loop (HIL) systems for developing and testing electronic control units (ECUs). The large number of configuration variations in vehicle and axle types requires the simulation model to be adjustable in a wide range. This paper presents a modular multibody approach for the vehicle dynamics simulation of single track configurations and truck-and-trailer combinations. The equations of motion are expressed by a new formula which is a combination of Jourdain's principle and the articulated body algorithm. With the proposed algorithm, a robust model is achieved that is numerically stable even at handling limits. Moreover, the presented approach is suitable for modular modeling and has been successfully implemented as a basis for various system definitions. As a result, only one simulation model is needed for a large variety of track and trailer types.
Video

Hybrid Panel - Hybrid Service Issues

2012-02-06
Hybrid vehicles are rapidly entering the commercial and consumer marketplaces. However, hybrids introduce safety and service issues many Owners and Service Technicians are not familiar with. Components and systems may be so new existing standards need to be located or new standards developed. Technicians may need to learn new skills, acquire new tools and their service bays modified. Learn as solutions and problems are shared involving servicing hybrid vehicles. Organizer Mark N. Pope,General Motors LLC Arnold Taube,John Deere Company Moderator Mark N. Pope,General Motors Company Panelist Russell George Christ,Deere & Company Mark Quarto,General Motors Company Arnold Taube,DEERE AND CO Organizer Mark N. Pope, General Motors LLC Arnold Taube, John Deere Company Moderator Mark N. Pope, General Motors Company Panelist Russell George Christ, Deere & Company Mark Quarto, General Motors Company Arnold Taube, DEERE AND CO
Video

Beyond MPG: Characterizing and Conveying the Efficiency of Advanced Plug-In Vehicles 

2011-11-08
Research in plug in vehicles (PHEV and BEV) has of course been ongoing for decades, however now that these vehicles are finally being produced for a mass market an intense focus over the last few years has been given to proper evaluation techniques and standard information to effectively convey efficiency information to potential consumers. The first challenge is the development of suitable test procedures. Thanks to many contributions from SAE members, these test procedures have been developed for PHEVs (SAE J1711 now available) and are under development for BEVs (SAE J1634 available later this year). A bigger challenge, however, is taking the outputs of these test results and dealing with the issue of off-board electrical energy consumption in the context of decades-long consumer understanding of MPG as the chief figure of merit for vehicle efficiency.
X