Refine Your Search

Topic

Search Results

Technical Paper

Inverse Reconstruction of the Spatial Distribution of Dynamic Tire-Road Contact Forces in Time Domain Using Impulse Response Matrix Deconvolution for Different Measurement Types

2021-08-31
2021-01-1061
In tire development, the dynamic tire-road contact forces are an important indicator to assess structure-borne interior cabin noise. This type of noise is the dominant source in the frequency range from 50-450 Hz, especially when rolling with constant angular velocity on a rough road. The spatial force distribution is difficult or sometimes even impossible to simulate or measure in practice. So, the use of an inverse technique is proposed. This technique uses response measurements in combination with a digital twin simulation model to obtain the input forces in an inverse way. The responses and model properties are expressed in the time domain, since it is specifically aimed to trace back the impact locations from road surface texture indents on the tire. In order to do so, the transient responses of the travelling waves as a result of these impacts is used. The framework expresses responses as a convolution product of the unknown loads and impulse response measurements.
Technical Paper

Development of a Fast Procedure for Vehicle Noise Source Quantification

2007-05-15
2007-01-2277
The identification of the contributions of airborne noise sources in vehicles in operational driving conditions is still a cumbersome task. Whereas the measurement of the transfer path from possible noise sources to the observer ear locations is efficient and accurate in most conditions, the source strength identification is still a challenging task. This paper presents the basic concepts of a new source quantification technique based on acoustic pressure measurements close to the operating sources. The main goal of developing a new technique is to achieve a faster and more economic method as compared to existing methods.
Technical Paper

Analysis of Tire/Road Noise Caused by Road Impact Excitations

2007-05-15
2007-01-2248
This paper presents the design and experimental results of a novel test setup to measure the road impact response of a rotating tire. The test setup is based on a tire on tire principle and is used to analyse mechanisms of tire/road noise during road impact excitations, such as driving on cobbled roads, joints of a concrete road surface, railroad crossings,… A series of test are performed with different driving speeds, cleat dimensions and inflation pressures. Radiated noise, vibrations of the tire surface and spindle forces are measured on the test setup during impact excitations.
Technical Paper

CAE-based Design of Active Noise Control Solutions

2007-01-17
2007-26-032
A key element to bring research advances on intelligent materials to industrial use is that the product CAE models must support such solutions. This involves modeling capabilities for intelligent material systems, sensor and actuator components, control systems as well as their integration in system-level application designs. The final result will then be a multi-attribute optimization approach integrating noise and vibration performance with reliability, durability and cost aspects. As no single integrated solution will fulfill all requirements of the various material and control approaches, the focus of the research is on the use, combination and extension of existing codes and tools.
Technical Paper

Combining acoustic imaging techniques to localize and identify sources

2008-03-30
2008-36-0595
This paper deals with recent advances in acoustic experimental methods and especially acoustic imaging. The paper covers two areas of interest to acousticians. In the first part, it is explained how near-field acoustic holography (NAH) can be extended with beamforming in the near-field, focalization. The combination of the two methods is providing now a source localization solution with a good spatial resolution over the complete frequency range without the burden of measuring a large number of points as would be required if only NAH was used. In the second part of the paper, a method is described that goes one step beyond source localization. In this part is explained how source localization techniques in conjunction with artificial excitation of the structure can provide information on the internal sources of the structure.
Technical Paper

Evaluation of Different Tire Noise Models for Vehicle pass-by Sound Synthesis

2009-05-19
2009-01-2226
Tire noise has become a predominant contributor in many traffic noise situations nowadays and hence, the demand for accurate tire noise prediction models is high. A rolling tire is experimentally characterized by means of the substitution monopole technique: the running tire is substituted by the non-operating tire covered by monopoles. All monopoles have mutual phase relationships and a well defined volume velocity distribution which is derived by means of an inverse Airborne Source Quantification technique; i.e. by combining static transfer function measurements with operational indicator pressure measurements close to the rolling tire. Models with varying amounts and locations of monopoles are discussed.
Technical Paper

A Novel Transfer Path Analysis Method Delivering a Fast and Accurate Noise Contribution Assessment

2009-01-21
2009-26-0047
Since its first publication in the beginning of the eighties, Transfer Path Analysis (TPA) has evolved into a widely used tool for noise and vibration troubleshooting and internal load estimation, and this for single source as well as multivariate problems. One of the main bottlenecks preventing its even more widespread use in the actual vehicle development process is the test time to build the full data model, requiring not only in-operation tests but also extensive Frequency Response Function tests. As a consequence, several new approaches have appeared over the past years attempting to circumvent this limitation, such as Fast and Multilevel TPA and Operational TPA. The latter method attracts quite some attention as it only requires operational data measured at the path references and target locations.
Technical Paper

Numerical Two-Port Characterization of the Aeroacoustic Propagation Effects in Exhaust Mufflers Including Non-Uniform Mean Flow Effects

2010-06-09
2010-01-1428
One dimensional linear acoustics network models are commonly used for the acoustic design of intake and exhaust systems. These models are advantageous since they allow the characterization of the scattering matrices for individual elements, independent of the upstream or downstream components. For an intake or exhaust assembly, the individual elements can be combined by a simple multiplication of the individual matrices to assess the propagation characteristics of the whole system under consideration. The determination of the scattering matrix coefficients can be carried out in an analytical, numerical or experimental way. Since the analytical methodologies are limited to uniform or simplified mean flow representation and the experimental two-port determination is expensive and time-consuming, a numerical method using the time domain Linearized Euler Equations is proposed in this paper.
Technical Paper

A Novel Transfer Path Analysis Method Delivering a Fast and Accurate Noise Contribution Assessment

2010-10-17
2010-36-0529
15 years of NVH applications make Transfer Path Analysis (TPA) appear a commodity tool. But despite the fact that TPA is today successfully used in a large variety of applications in automotive and mechanical industries, its main bottleneck remains the huge measurement time to build the full TPA model. This paper presents a new TPA method that provides a good compromise between path accuracy and measurement time. The method is also referred to as OPAX. The key idea of OPAX is the use of simplified parametric load models with limited number of model parameters. The main advantage of this is that one should measure only a small amount of FRF data to identify the operational loads. This drastically reduces measurement time and efforts. In addition to this, the OPAX method does not require mount stiffness data and allows a simultaneous identification of structural and acoustic paths.
Technical Paper

Application of Energy Flow Analysis Focused on Path Visualization into Vehicle Design

2010-10-17
2010-36-0505
The development of new design tools to predict the vibro-acoustic behavior within the vehicle development process is of essential importance to achieve better products in an ever shorter timeframe. In this paper, an energy flow post-processing tool for structural dynamic analysis is presented. The method is based on the conversion of conventional finite element (FE) results into energy quantities corresponding with each of the vehicle subcomponents. Based on the global dynamic system behavior and local subcomponent descriptions, one can efficiently evaluate the energy distribution and analyze the vibro-acoustic behavior in complex structures. By using energy as a response variable, instead of conventional design variables as pressure or velocity, one can obtain important information regarding the understanding of the vibro-acoustic behavior of the system.
Technical Paper

Advances in Industrial Modal Analysis

2001-03-05
2001-01-3832
One of the scientific fields where, for already more than 20 years, system identification plays a crucial role is this of structural dynamics and vibro-acoustic system optimization. The experimental approach is based on the “Modal Analysis” concept. The present paper reviews the test procedure and system identification principles of this approach. The main focus though is on the real problems with which engineers, performing modal analysis on complex structures on a daily basis, are currently confronted. The added value of several new testing approaches (laser methods, smart transducers…) and identification algorithms (spatial domain, subspace, maximum likelihood,..) for solving these problems is shown. The discussed elements are illustrated with a number of industrial case studies.
Technical Paper

Assessment of Combustion Mechanical Noise Separation Techniques on a V8 Engine

2017-06-05
2017-01-1846
The noise radiated by an ICE engine results from a mixture of various complex sources such as combustion, injection, piston slap, turbocharger, etc. Some of these have been categorized as combustion related noise and others as mechanical noise. Of great concern is the assessment of combustion noise which, under some operating conditions, is likely to predominate over the other sources of noise. The residual noise, produced by various other sources, is commonly referred to as mechanical noise. Being able to extract combustion and mechanical noise is of prime interest in the development phase of the engine and also for diagnostic purposes. This paper presents the application of combustion mechanical noise separation techniques on a V8 engine. Three techniques, namely the multi regression analysis, the classical Wiener filter and the cyclostationary (synchronous) Wiener filter, have been investigated.
Technical Paper

Synthesis of Drive-by Noise Based on Numerically Evaluated Source-Receiver Transfer Functions Employing the FMBEM

2011-05-17
2011-01-1610
Prediction of the drive-by noise level in the early design stage of an automotive vehicle is feasible if the source signatures and source-receiver transfer functions may be determined from simulations based on the available CAD/CAE models. This paper reports on the performance of a drive-by noise synthesis procedure in which the transfer functions are numerically evaluated by employing the Fast Multipole Boundary Element Method (FMBEM). The proposed synthesis procedure first computes the steady-state receiver contributions of the sources as appearing from a number of vehicle positions along the drive path. In a second step, these contributions are then combined into a single transient signal from a moving vehicle for each source-receiver pair by means of a travel time correction.
Technical Paper

Time-Domain Source Contribution Analysis Method for In-Room Pass-By Noise

2011-05-17
2011-01-1609
This paper presents a new time-domain source contribution analysis method for in-room pass-by noise. The core of the method is a frequency-domain ASQ model (Airborne Source Quantification) representing each noise generating component (engine, exhaust, left and right tyres, etc.) by a number of acoustic sources. The ASQ model requires the measurement of local FRF's and acoustic noise transfer functions to identify the operational loads from nearby pressure indicator responses and propagate the loads to the various target microphones on the sides of the vehicle. Once a good ASQ model is obtained, FIR filters are constructed, allowing a time-domain synthesis of the various source contributions to each target microphone. The synthesized target response signals are finally recombined into a pass-by sound by taking into account the speed profile of the vehicle.
Technical Paper

Passenger Vehicle Pass-By Noise Test Using Generalized Inverse Beamforming

2011-10-04
2011-36-0408
The investigation of critical noise sources on pass-by noise tests is demanding development of the current techniques in order to locate and quantify these sources. One recent approach is to use beamforming techniques to this purpose. The phased array information can be processed using several methods, for example, conventional delay-and-sum algorithms, deconvolution based algorithms, such as DAMAS, and more recently, the generalized inverse beamforming. This later method, presents the advantage of separating coherent sources with better dynamic range than conventional beamforming. Also, recent developments, such as Iteratively Re-Weigthing Least Squares, increases the localization accuracy allowing it to be used in a challenging problem as a fast moving source detection, a non-stationary condition. The work will raise the main advantages and disadvantages on this method using a practical case, a passenger vehicle pass-by test.
Technical Paper

On-Line Sound Brush Measurement Technique for 3D Noise Emission Studies

2013-05-13
2013-01-1973
A key issue in noise emission studies of noise producing machinery concerns the identification and analysis of the noise sources and their interaction and radiation into the far field. This paper presents a new acoustic measurement technique for noise source identification in stationary applications. The core of the technology is a handheld measurement instrument combining a position and orientation tracking device with a 3D sound intensity probe. The technique allows an on-line 3D visualization of the sound field while moving the probe freely around the test object. By focusing on the areas of interest, troublesome areas can be identified that require further in-depth analysis. The measurement technique is flexible, interactive and widely applicable in industrial applications. This paper explains the working principle and characteristics of this new technology and positions it to existing methods like traditional sound intensity testing and array techniques.
Technical Paper

Improving the Sound Transmission Loss of an Aircraft Ceiling Panel by Locally Resonant Metamaterials

2022-06-15
2022-01-0960
Lightweight structures and designs have been widely used in a number of engineered structures due to ecological and environmental aspects. Nonetheless, lightweight structures typically experience a reduced noise and vibration reduction performance as a consequence of their increased stiffness-to-mass-ratio. To enhance it, novel low mass and compact countermeasures are often sought to address the challenges of achieving not only a good Noise, Vibrations and Harshness (NVH) reduction performance but also maintaining a lightweight design. Recently, locally resonant metamaterials have emerged and shown potential as a lightweight noise and vibration solution with a superior performance in tunable frequency ranges, known as stop bands i.e. frequency regions where free wave propagation is not allowed. These can be achieved by assembling resonant elements that are tuned to the targeted frequency range onto a host structure.
Technical Paper

Virtual Car Sound Synthesis Technique for Brand Sound Design of Hybrid and Electric Vehicles

2012-11-25
2012-36-0614
One of the practical consequences of the development of low CO₂ emission cars is that many of the traditional NVH sound engineering processes no longer apply and must be revisited. Different and new sound sources, new constraints on vehicle body design (e.g., due to weight) and new sound perception characteristics make that the NVH knowledge built on generations of internal combustion-powered vehicles cannot be simply transferred to Hybrid and Electric Vehicles (HEV). Hence, the applicability of tools must be reviewed and extensions need to be developed where necessary. This paper focuses on sound synthesis tools as developed for ICE-powered vehicles. Because of the missing masking effect and the missing intake and exhaust noise of the Internal Combustion Engine (ICE) in electric vehicles, on one hand electric vehicles are quieter than traditional vehicles.
Technical Paper

A Source-Transfer-Receiver Approach to NVH Engineering of Hybrid/Electric Vehicles

2012-11-25
2012-36-0646
Vehicles with electrified powertrains are being introduced at an increasing pace. On the level of interior sound, one is often inclined to assume that NVH problems in EV have disappeared together with the combustion engine. Three observations demonstrate that this is not the case. First of all, only the dominant engine sound disappears, not the noise from tire, wind or auxiliaries, which consequently become increasingly audible due to the removal of the broadband engine masking sound. Secondly, new noise sources like tonal sounds from the electro-mechanical drive systems emerge and often have, despite their low overall noise levels, a high annoyance rating. Thirdly, the fact that engine/exhaust sounds are often used to contribute to the “character” of the vehicle leads to an open question how to realize an appealing brand sound with EV. Hybrid vehicles are furthermore characterized by mode-switching effects, with impact on both continuity feeling and sound consistency problems.
Technical Paper

Model-Based Synthesis of Noise in Aircrafts

2005-10-03
2005-01-3404
Aircraft noise modeling aims to provide designers with computational tools that allow exploring the design parameters domain early in the design and development process. A number of modeling techniques are available for acoustics and vibration prediction, but in order to define objective targets for sound quality perception, dedicated tools are still needed to correlate structural models and design modifications with human perception of sounds. This paper presents a model-based sound synthesis concept for interior and exterior aircraft noise that allows interactive, real-time sound reproduction and replay. The proposed approach is presented through two application cases: jet flyover noise and turboprop interior noise.
X