Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

Impact of the Turbulence Model and Numerical Approach on the Prediction of the Ammonia Homogenization in an Automotive SCR System

2012-04-16
2012-01-1291
The Selective Catalytic Reduction (SCR) is a promising approach to meet future legislation regarding the nitric oxide emissions of diesel engines. In automotive applications a liquid urea-water solution (UWS) is injected into the hot exhaust gas. It evaporates and decomposes to ammonia vapor acting as the reducing agent. Significant criteria for an efficient SCR system are a fast mixture preparation of the UWS and a high ammonia uniformity at the SCR catalyst. Multiphase CFD simulation is capable to support the development of this process. However, major challenges are the correct description of the liquid phase behavior and the simulation of the ammonia vapor mixing in the turbulent exhaust gas upstream of the SCR catalyst. This paper presents a systematic study of the impact of the turbulence model and the numerical spatial discretization scheme on the prediction of the turbulent mixing process of the gaseous ammonia.
Technical Paper

Investigations on the Tail-Pipe Emissions of Commercial Engines with Advanced One-Dimensional Simulation Methods

2013-04-08
2013-01-1117
Current commercial vehicles' engines are complex systems with multiple degrees of freedom. In conjunction with current emissions regulations manufacturers are forced to combine highly developed engines with complex aftertreatment systems. A comprehensive simulation model including the engine and aftertreatment system has been set up in order to study and optimize the overall system. The model uses a phenomenological spray combustion model to predict fuel consumption and NO emissions. In addition physical models for the material temperatures and the reaction kinetics were generated for the aftertreatment system. Steady state and transient measurements were used to calibrate the engine as well as the aftertreatment model. The aim for a system-level optimization was a reduction of fuel consumption while meeting emission standards.
Technical Paper

Validation of Turbulence Models for an Automotive SCR System with Laser Doppler Anemometry Measurements

2013-04-08
2013-01-1579
In exhaust systems with selective catalytic reduction (SCR) a fast conversion of liquid urea to gaseous ammonia and a uniform distribution of the ammonia vapor upstream of the SCR catalyst are essential to reduce the nitric oxides efficiently. For the prediction of the mixing process and the transport of ammonia vapor with the CFD method an accurate description of the turbulent flow field is a basic requirement. This paper presents the comparison of simulation results using three different turbulence models (high-Re kε-RNG model, low-Re kω-SST model, Reynolds stress model) with measurements of the turbulent velocity field using Laser Doppler Anemometry (LDA). The investigations were carried out for a SCR system with a swirl mixer on a cold flow test bench for two different volume flows. From the measured velocity signals different components of the Reynolds-tensor were derived.
Technical Paper

Modelling the Knocking Combustion of a Large Gas Engine Considering Cyclic Variations and Detailed Reaction Kinetics

2014-10-13
2014-01-2690
The combustion efficiency of large gas engines is limited by knocking combustion. Due to fact that the quality of the fuel gas has a high impact on the self-ignition of the mixture, it is the aim of this work to model the knocking combustion for fuel gases with different composition using detailed chemistry. A cycle-resolved knock simulation of the fast burning cycles was carried out in order to assume realistic temperatures and pressures in the unburned mixture Therefore, an empirical model that predicts the cyclic variations on the basis of turbulent and chemical time scales was derived from measured burn rates and implemented in a 1D simulation model. Based on the simulation of the fast burning engine cycles the self-ignition process of the unburned zone was calculated with a stochastic reactor model and correlated to measurements from the engines test bench. A good agreement of the knock onset could be achieved with this approach.
Technical Paper

Numerical Study of the Fuel Efficiency and the Thermal Management of a Fuel Cell Powered Long-Haul Vehicle

2023-04-11
2023-01-0764
In the future, conventional powertrains will increasingly be supplied by sustainable energy sources. Long-haul freight transport requires efficient energy storage and the ability to refuel quickly. For this reason, hydrogen-powered PEM fuel cells are being discussed as a future energy source for long-distance vehicles. However, there are numerous challenges in packaging, system cooling and service life. Above all, the dissipation of the fuel cell’s heat losses places high demands on the design of the cooling system due to the relatively low operating temperature. In the presented study, a complete generic drive train of a long-distance commercial vehicle was set up within a suitable simulation environment to investigate the required sizes of the fuel cell stack, the HV battery, the hydrogen tanks, and the cooling circuit.
X