Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Exhaust Gas Driven Generator with Altitude Compensation for Battery Dominant Hybrid Electric Vehicles

2003-10-27
2003-01-3276
HEVs historically have had reduced performance at elevations higher than sea level. The effects of this loss of performance can be mediated with the use of a standard turbocharger; however, approximately 80-90% of the vehicle's operation is at altitudes where full boost from the turbocharger is not needed to maintain performance characteristics comparable to conventional vehicles of the same size. If the turbocharger is used to drive an electric generator, the power produced by the turbine section that is not needed to produce boost in the compressor section of the turbocharger can be used to charge the traction battery of HEVs. The Exhaust Gas Driven Generator converts the thermal energy, normally wasted through the exhaust of the ICE, to electrical energy stored in the traction battery of the HEV.
Technical Paper

Design and Development of the 2002 UC Davis FutureTruck

2003-03-03
2003-01-1263
Yosemite is an advanced hybrid electric vehicle built on the Ford U152 Explorer platform. The University of California, Davis, FutureTruck team designed Yosemite to meet the following objectives: 1 Maximize vehicle energy efficiency 2 Minimize petroleum consumption 3 Reduce fuel cycle greenhouse gas emissions 4 Achieve California Super Ultra Low Emission Vehicle (SULEV) target 5 Deliver class-leading performance The University of California, Davis FutureTruck team redesigned a 2002 Ford Explorer as a Hybrid Electric Vehicle to meet the following goals: reduce fuel cycle greenhouse gas emissions by 67%, double the fuel economy of a stock Explorer, meet California's Super Ultra Low Emissions Vehicle standard, and qualify for substantial Partial Zero Emissions Vehicle credits in California. Yosemite meets these goals with an efficient flexible fuel hybrid powertrain, improved component systems, and an advanced control system.
Technical Paper

Design and Development of a Parallel Hybrid Powertrain for a High Performance Sport Utility Vehicle

2005-10-24
2005-01-3827
A plug-in, charge-depleting, parallel hybrid powertrain has been developed for a high performance sport utility vehicle. Based on the Ford U152 Explorer platform, implementation of the hybrid powertrain has resulted in an efficient, high performance vehicle with a 0-60 mph acceleration time of 7.5 seconds. A dual drive system allows for four-wheel drive capability while optimizing regenerative braking and minimizing electric motor cogging losses. Design of the system focused on reducing petroleum use, lowering greenhouse gas emissions, and reducing criteria tailpipe emissions. Additionally, this vehicle has been designed as a partial zero emissions vehicle (PZEV), allowing the driver to travel up to 50 miles in a zero emission all-electric mode. High-energy traction battery packs can be charged from the grid, yielding higher efficiencies and lower critical emissions, or maintained through the internal combustion engine (ICE) as with a traditional hybrid vehicle.
X