Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

A Math-Based CAE High-Speed Punch Methodology for Polymer Airbag Cover Design

2006-04-03
2006-01-1187
Owing to the complex processing effects of injection molding and the influence of the wide-range of in-service conditions (e.g., from -40°C to 90°C) on the performance of polymer airbag covers, the current development of airbag performance criteria is largely conducted on a trial-and-error basis. This paper represents a recently developed virtual engineering tool which uses the LS-DYNA FEA (finite element analysis) solver for predicting the performance of polymer airbag cover designs under high-speed punch tests. The key element of this math-based technology is the method for determination and application of the rate-of-deformation and the temperature dependent material database; namely, Young's modulus, yield point, and ultimate strain. Experimental and virtual high-speed impact punch tests on Tekron 4300D-88A TPE (thermoplastic elastomer) were conducted at -40°C, 13°C, and 90°C with an impact speed of 6.7m/s (15 miles per hour).
Technical Paper

Nonlinear CAE Meshfree Simulation of a Truck-Based Radiator Hose/Fitting/Clamp Assembly Process

2000-03-06
2000-01-0295
A robust nonlinear meshfree computer-aided-engineering (CAE) analysis algorithm based on the Reproducing Kernel Particle Method (RKPM) is employed for simulating the installation and sealing performance of a truck-based radiator hose/fitting/clamp system assembly. The formulation of the present nonlinear meshfree CAE simulation comprises the geometric and material nonlinearities, a Lagrangian material based reproducing kernel shape function, a pressure projection method for nearly incompressible rubber hose material, and a direct transformation method for frictional contact boundary conditions. This simulation, which defines a radiator hose/fitting operating process series as insertion, clamping, pressurization and pull-off, provides a parametric investigation on the effect of clamping depth, clamping width, clamping location, and fluid pressure load on the hose-fitting contact seal width, contact pressure distribution, and the maximum pull-off force properties.
X