Refine Your Search

Topic

Search Results

Technical Paper

Blending Behavior of Hydrocarbon and Oxygenate Molecules to Optimize RON and MON for Modern Spark-Ignition Engines (SI)

2020-09-15
2020-01-2145
Gasoline blending is known to be complicated, because individual gasoline fractions with different octane numbers, Research Octane Number (RON) or Motor Octane Number (MON) do not always blend linearly. Instead, they may blend non-linearly, in a synergistic or antagonistic manner. Even though RON and MON are regulated properties, linear and non-linear octane blending is not a broadly understood topic. The target in the developing process of a modern SI engine is to have 100% combustion efficiency which would lead to the reduction of hydrocarbon and carbon monoxide emissions. Therefore, the properties of gasoline, especially RON and MON, need to be optimized to ensure proper ignition in the engine and prevent harmful autoignition reactions. There are hundreds of hydrocarbons in gasoline which have different octane numbers (ON). The explanations for these variations are the structural differences in hydrocarbon molecules that influence on their reactivity.
Technical Paper

Impact of Ethane Enrichment on Diesel-Methane Dual-Fuel Combustion

2020-04-14
2020-01-0305
Over the past few years, the growing concerns about global warming and efforts to reduce engine-out emissions have made the dual-fuel (DF) engines more popular in marine and power industries. The use of natural gas as an alternative fuel in DF engines has both the environmental and economic advantages over the conventional diesel combustion. However, the misfire phenomenon at lean conditions limits the operating range of DF combustion and causes emissions of unburned hydrocarbon (UHC) and unburned methane (methane-slip) in the environment. The greenhouse effect of methane is considered 28 times greater than CO2 over a 100-year perspective, which raises concerns for the governments and marine engine manufacturers. In efforts to reduce the UHC and methane-slip from DF engines, this study discusses ethane enrichment of diesel-methane DF combustion in a full-metal single-cylinder research engine under lean condition (λGFB = ~2.0) while keeping the total-fuel energy rather constant.
Journal Article

Characteristics of High Pressure Jets for Direct Injection Gas Engine

2013-04-08
2013-01-1619
The direct injection (DI) natural gas engine is considered as one of the promising technologies to achieve the continuing goals of the higher efficiency and reduced emissions for internal combustion engines. Shock wave phenomena can easily occur near the nozzle exit when high pressure gaseous fuel is injected directly into the engine cylinder. In the present study, high pressure gas issuing from a prototype gas injector was experimentally studied using planar laser-induced fluorescence (PLIF) technique. Acetone was selected as a fuel tracer. The effects of injection pressures on the flow structure and turbulent mixing were investigated based on a series of high resolution images. The jet macroscopic structures, such as jet penetration, cone angle and jet volume, are analyzed under different injection pressures. Results show that barrel shock waves can significantly influence the jet flow structure and turbulent mixing.
Journal Article

Large-Bore Compression-Ignition Engines: High NOx Reduction Achieved at Low Load with Hydro-Treated Vegetable Oil

2011-08-30
2011-01-1956
The objective of this paper is to analyze the performance and the combustion of a large-bore medium-speed engine running with hydro-treated vegetable oil (HVO) at low engine load. This fuel has a paraffinic chemical structure and high cetane number (CN). The main benefits are thus lower emission compared to diesel fuel and low soot values. The facility used in this study is a research engine, where the conditions before and after the machine, the valve timing and the injection parameters are fully adjustable. Several in-cylinder conditions before the combustion have been tested. The results are promising and show the benefits of HVO compared to diesel fuel. In fact, it has been possible to reduce nitrogen oxides (NOx) emission over 50% running with HVO and opportunely tuned valve timing.
Technical Paper

Application of Synthetic Renewable Methanol to Power the Future Propulsion

2020-09-15
2020-01-2151
As CO2 emissions from traffic must be reduced and fossil-based traffic fuels need to phase out, bio-based traffic fuels alone cannot meet the future demand due to their restricted availability. Another way to support fossil phase-out is to include synthetic fuels that are produced from circular carbon sources with renewable energy. Several different fuel types have been proposed, while, methanol only requires little processing from raw materials and could be used directly or as a drop-in fuel for some of the current engine fleet. CO2 emissions arising from fuel production are significantly reduced for synthetic renewable methanol compared to the production of fossil gasoline. Methanol has numerous advantages over the currently used fossil fuels with high RON and flame speed in spark-ignition engines as well as high efficiency and low emissions in combustion ignition engines.
Technical Paper

In-Cylinder Flow Field of a Diesel Engine

2007-10-29
2007-01-4046
The flow through the valves of an engine cylinder head is very complex in nature due to very high gas velocities and strong flow separation. However, it is also the typical situation in almost every engine related flow. In order to gain better understanding of the flow features after the cylinder head, and to gain knowledge of the performance level that can be expected from CFD analysis, flow field measurements and computations were made in an engine rig. Particle image velocimetry (PIV) and paddle wheel measurements have been conducted in a static heavy-duty diesel engine rig to characterize the flow features with different valve lifts and pressure differences. These measurements were compared with CFD predictions of the same engine. The simulations were done with the standard k-ε turbulence model and with the RNG turbulence model using the Star-CD flow solver.
Technical Paper

CFD Modeling of the Initial Turbulence Prior to Combustion in a Large Bore Diesel Engine

2008-04-14
2008-01-0977
The study aims at providing more accurate initial conditions for turbulence prior to combustion with the help of a four valve, large bore diesel engine CFD model. Combustion simulations are typically done with a sector mesh and initial turbulence in these simulations is usually taken from relatively inaccurate correlations. This study also aims at developing a more accurate initial turbulence correlation for combustion simulations. A one-dimensional model was first used to provide boundary conditions as well as the initial flow conditions at the beginning of the simulation. Steady state and transient boundary conditions were studied. Also, the standard κ - ε and RNG/κ - ε turbulence models were compared. From the averaged values of turbulence kinetic energy and its dissipation rate over the cylinder volume, a re-tuned correlation for defining the initial turbulent conditions at bottom dead center (BDC) prior to the compression stroke is proposed.
Technical Paper

Conjugate Heat Transfer in CI Engine CFD Simulations

2008-04-14
2008-01-0973
The development of new high power diesel engines is continually going for increased mean effective pressures and consequently increased thermal loads on combustion chamber walls close to the limits of endurance. Therefore accurate CFD simulation of conjugate heat transfer on the walls becomes a very important part of the development. In this study the heat transfer and temperature on piston surface was studied using conjugate heat transfer model along with a variety of near wall treatments for turbulence. New wall functions that account for variable density were implemented and tested against standard wall functions and against the hybrid near wall treatment readily available in a CFD software Star-CD.
Technical Paper

Fuel Injection System Simulation with Renewable Diesel Fuels

2009-09-13
2009-24-0105
Renewable diesel-type fuels and their compatibility with a single-cylinder medium-speed research diesel engine were studied. The report consists of a literature study on the fuels, introduction of the simulation model designed and simulations made, and of the results and summary sections. The fuels studied were traditional biodiesel (fatty acid methyl ester, FAME), hydrotreated vegetable oil (HVO), Fischer-Tropsch (FT) diesel fuels and dimethyl ether (DME). According to the simulations, the behaviors of different renewable diesel fuels in the fuel injection system are quite similar to one another, with the greatest deviations found with DME. The main differences in the physical properties are fuel densities and viscosities and especially with DME compressibility, which have some predictable effect. The chemical properties of the fuels are more critical for a common rail fuel injection system.
Technical Paper

NOx Reduction in a Medium-Speed Single-Cylinder Diesel Engine using Miller Cycle with Very Advanced Valve Timing

2009-09-13
2009-24-0112
The objective of this study is to achieve high reduction of NOx emissions in a medium-speed single-cylinder research engine. The main feature of this research engine is that the gas exchange valve timing is completely adjustable with electro-hydraulic actuators. The study is carried out at high engine load and using a very advanced Miller valve timing. Since the engine has no turbocharger, but a separate charge air system, 1-D simulations are carried out to find the engine setup, which would be close to the operating points of a real engine. The obtained NOx reduction is over 40% with no penalty in fuel consumption.
Technical Paper

Effect of Intake Channel Design to Cylinder Charge and Initial Swirl

2010-04-12
2010-01-0624
Two different medium-speed diesel engine cylinder head designs have been studied. The focus of the study has been the effect of intake channel design in the in-cylinder flow. The study has been carried out by CFD. The first cylinder head is a standard Wärtsilä 20 cylinder head and the second one is a specially designed head for a single cylinder research engine, called Extreme Value Engine (EVE). The CFD boundary conditions have been simulated by the help of a 1-d simulation code. In the full load cases the maximum cylinder pressure was 300 bar. Simulations have been done at lower load level too. One simulation with the new cylinder head was carried out with one intake valve closed in order to get an idea of the swirl to be generated by this approach. In the study the in-cylinder flow field, the cylinder charge and turbulence kinetic energy have been examined.
Technical Paper

Valve Train Design for a New Gas Exchange Process

2004-03-08
2004-01-0607
The design and testing of the valve train for a new two-stroke diesel engine concept [1,2] is presented. The gas exchange of this process requires extremely fast-acting inlet valves, which constituted a very demanding designing task. A simulation model of the prototype valve train was constructed with commercially available software. The simulation program served as the main tool for optimizing the dynamic behavior of the valve train. The prototype valve train was built according to the simulations and valve acceleration measurements were performed in order to validate the simulation results. The simulations and measurements are presented in detail in this paper.
Technical Paper

Novel Two-Stroke Engine Concept, Feasibility Study

2003-10-27
2003-01-3211
A novel two-stroke engine concept is introduced. The cylinder scavenging takes place during the upward motion of the piston. The gas exchange valves are similar to typical four-stroke valves, but the intake valves are smaller and lighter. The scavenging air pressure is remarkably higher than in present-day engines. The high scavenging air pressure is produced by an external compressor. The two-stroke operation is achieved without the drawbacks of port scavenged engines. Moreover, the combustion circumstances, charge pressure and temperature and internal exhaust gas re-circulation (EGR) can be controlled by using valve timings. There is good potential for a substantial reduction in NOx emissions through the use of adjustable compression pressure and temperature and by using the adjustable amount of exhaust gas re-circulation.
Technical Paper

Performance Simulation of a Compression Ignition Free Piston Engine

2001-03-05
2001-01-0280
A dual-piston, two-stroke, compression ignition free piston engine has been simulated with zero- and one-dimensional performance simulation codes. The simulation models used in the codes have been developed to analyze and improve the internal combustion engine process of a hydraulic free piston engine prototype. The prototype was designed and constructed in Tampere University of Technology at the Institute of Hydraulics and Automation. Performance simulation analyses were conducted in Helsinki University of Technology at the Internal Combustion Engine Laboratory. The zero-dimensional model is used for the simulation of piston dynamics. The one-dimensional model is used for performance simulation, especially for the simulation of gas exchange process. The simulation results were verified through prototype engine measurements.
Technical Paper

Comparing Single-Step and Multi-Step Chemistry Using The Laminar and Turbulent Characteristic Time Combustion Model In Two Diesel Engines

2002-05-06
2002-01-1749
Three-dimensional diesel engine combustion simulations with single-step chemistry have been compared with two-step and three-step chemistry by means of the Laminar and Turbulent Characteristic Time Combustion model using the Star-CD program. The second reaction describes the oxidation of CO and the third reaction describes the combustion of H2. The comparisons have been performed for two heavy-duty diesel engines. The two-step chemistry was investigated for a purely kinetically controlled, for a mixing limited and for a combination of kinetically and mixing limited oxidation. For the latter case, two different descriptions of the laminar reaction rates were also tested. The best agreement with the experimental cylinder pressure has been achieved with the three-step mechanism but the differences with respect to the two-step and single-step reactions were small.
Technical Paper

Relating Integral Length Scale to Turbulent Time Scale and Comparing k-ε and RNG k-ε Turbulence Models in Diesel Combustion Simulation

2002-03-04
2002-01-1117
A modified version of the Laminar and Turbulent Characteristic Time combustion model and the Hiroyasu-Magnussen soot model have been implemented in the flow solver Star-CD. Combustion simulations of three DI diesel engines, utilizing the standard k-ε turbulence model and a modified version of the RNG k-ε turbulence model, have been performed and evaluated with respect to combustion performance and emissions. Adjustments of the turbulent characteristic combustion time coefficient, which were necessary to match the experimental cylinder peak pressures of the different engines, have been justified in terms of non-equilibrium turbulence considerations. The results confirm the existence of a correlation between the integral length scale and the turbulent time scale. This correlation can be used to predict the combustion time scale in different engines.
Technical Paper

LES and RNG Turbulence Modeling in DI Diesel Engines

2003-03-03
2003-01-1069
The one-equation subgrid scale model for the Large Eddy Simulation (LES) turbulence model has been compared to the popular k-ε RNG turbulence model in very different sized direct injection diesel engines. The cylinder diameters of these engines range between 111 and 200 mm. This has been an initial attempt to study the effect of LES in diesel engines without any modification to the combustion model being used in its Reynolds-averaged Navier-Stokes (RANS) form. Despite some deficiencies in the current LES model being used, it already gave much more structured flow field with approximately the same kind of accuracy in the cylinder pressure predictions than the k-ε RNG turbulence model.
Technical Paper

A New Approach for Modeling Coke Particle Emissions from Large Diesel Engines Using Heavy Fuel Oil

2017-10-08
2017-01-2381
In the present study, a new approach for modelling emissions of coke particles or cenospheres from large diesel engines using HFO (Heavy fuel oil) was studied. The model used is based on a multicomponent droplet mass transfer and properties model that uses a continuous thermodynamics approach to model the complex composition of the HFO fuel and the resulting evaporation behavior of the fuel droplets. Cenospheres are modelled as the residue left in the fuel droplets towards the end of the simulation. The mass-transfer and fuel properties models were implemented into a cylinder section model based on the Wärtsilä W20 engine in the CFD-code Star CD v.4.24. Different submodels and corresponding parameters were tuned to match experimental data of cylinder pressures available from Wärtsilä for the studied cases. The results obtained from the present model were compared to experimental results found in the literature.
Technical Paper

Improving the Accuracy of 1-D Fuel Injection Modeling

2012-04-16
2012-01-1256
In this study, one-dimensional fluid dynamics simulation software was utilized in producing common rail diesel fuel injection for varying injection parameters with enhanced accuracy. Injection modeling refinement is motivated by improved comprehension of the effects of various physical phenomena within the injector. In addition, refined injection results yield boundary conditions for three-dimensional CFD simulations. The criteria for successful simulation results were evaluated upon experimental test run data that have been reliably obtained, primarily total injected mass per cycle. A common rail diesel fuel delivery system and its core mechanics were presented. System factors most critical to fuel delivery were focalized. Models of two solenoid-type common rail injectors of different physical sizes and applications were enhanced.
Technical Paper

Studying Local Conditions in a Heavy-Duty Diesel Engine by Creating Phi-T Maps

2011-04-12
2011-01-0819
New measurements have been done in order to obtain information concerning the effect of EGR and a paraffinic hydrotreated fuel for the smoke and NO emissions of a heavy-duty diesel engine. Measured smoke number and NO emissions are explained using detailed chemical kinetic calculations and CFD simulations. The local conditions in the research engine are analyzed by creating equivalence ratio - temperature (Phi-T) maps and analyzing the CFD results within these maps. The study uses different amount of EGR and two different diesel fuels; standard EN590 diesel fuel and a paraffinic hydrotreated vegetable oil (HVO). The detailed chemical kinetic calculations take into account the different EGR rates and the properties of the fuels. The residence time in the kinetical calculations is used to explain sooting combustion behavior within diesel combustion. It was observed that NO emission trends can be well captured with the Phi-T maps but the situation is more difficult with the engine smoke.
X