Refine Your Search

Topic

null

Search Results

Standard

ENGINE TERMINOLOGY AND NOMENCLATURE—GENERAL

1995-06-28
J604_199506
This SAE Recommended Practice is applicable to all types of reciprocating engines including two-stroke cycle and free piston engines, and was prepared to facilitate clear understanding and promote uniformity in nomenclature. Modifying adjectives in some cases were omitted for simplicity. However, it is good practice to use adjectives when they add to clarity and understanding.
Standard

Engine Terminology and Nomenclature - General

2011-08-05
J604_201108
This SAE Recommended Practice is applicable to all types of reciprocating engines including two-stroke cycle and free piston engines, and was prepared to facilitate clear understanding and promote uniformity in nomenclature. Modifying adjectives in some cases were omitted for simplicity. However, it is good practice to use adjectives when they add to clarity and understanding.
Standard

Continuously Variable Transmission Test Code For Passenger Cars

2000-04-12
J1618_200004
To measure the performance characteristics of Continuously Variable Transmissions (CVT). It outlines dynamometer tests that cover the range of operation and provides a method of presenting the test data. This procedure must be followed with similar test facilities so that results obtained from different laboratories are comparable.
Standard

CONTINUOUS HYDROCARBON ANALYSIS OF DIESEL EMISSIONS

1988-06-01
J215_198806
The method presented is the current recommendation for the use of flame ionization detectors to determine the hydrocarbon content of diesel engine exhaust, or exhaust of vehicles using diesel engines, when operating at steady-state. The requirements of the associated sampling system and a general procedure for a continuous measuring method are presented.
Standard

CONTINUOUS HYDROCARBON ANALYSIS OF DIESEL EMISSIONS

1980-01-01
J215_198001
The method presented is the current recommendation for the use of flame ionization detectors to determine the hydrocarbon content of diesel engine exhaust, or exhaust of vehicles using diesel engines, when operating at steady-state. The requirements of the associated sampling system and a general procedure for a continuous measuring method are presented.
Standard

CONTINUOUS HYDROCARBON ANALYSIS OF DIESEL EMISSIONS

1970-11-01
J215_197011
The method presented is the current recommendation for the use of flame ionization detectors to determine the hydrocarbon content of diesel engine exhaust, or exhaust of vehicles using diesel engines, when operating at steady-state. The requirements of the associated sampling system and a general procedure for a continuous measuring method are presented.
Standard

CONTINUOUS HYDROCARBON ANALYSIS OF DIESEL EMISSIONS

1995-03-01
J215_199503
The method presented is the current recommendation for the use of flame ionization detectors to determine the hydrocarbon content of diesel engine exhaust, or exhaust of vehicles using diesel engines, when operating at steady-state. The requirements of the associated sampling system and a general procedure for a continuous measuring method are presented.
Standard

Multiposition Small Engine Exhaust System Fire Ignition Suppression

2020-10-06
J335_202010
This SAE Recommended Practice establishes equipment and test procedures for determining the performance of spark arrester exhaust systems of multiposition small engines (<19 kW) used in portable applications, including hand-held, hand-guided, and backpack mounted devices. It is not applicable to spark arresters used in vehicles or stationary equipment.
Standard

INSTRUMENTATION AND TECHNIQUES FOR EXHAUST GAS EMISSIONS MEASUREMENT

1971-06-01
J254_197106
This SAE Recommended Practice establishes uniform laboratory techniques for the continuous and grab sample measurement of various constituents in the exhaust gas of the gasoline engines installed in passenger cars and light trucks. The report concentrates on the measurement of the following components in exhaust gas: hydrocarbons (HC), carbon monoxide (CO), carbon dioxide (CO2), nitric oxide (NO), nitrogen dioxide (NO2), and oxygen (O2). This recommended practice includes the following sections: 1. Introduction 2. Definitions and Terminology 3. Sampling and Instrumentation 4. Associated Test Equipment 5. Test Procedures Appendix—Other Measurement Technology
Standard

MEASUREMENT OF INTAKE AIR OR EXHAUST GAS FLOW OF DIESEL ENGINES

1983-06-01
J244_198306
The detailed recommendations have been limited to four metering systems and the associated equipment required to measure diesel engine gas flows at steady-state operating conditions. Accuracy goals are established, and the procedures and equipment are proposed as required to obtain desired measurement accuracy.
Standard

MEASUREMENT OF INTAKE AIR OR EXHAUST GAS FLOW OF DIESEL ENGINES

1992-08-01
J244_199208
This procedure establishes recommendations on the measurement of diesel engine intake air flow under steady-state test conditions. The measurement methods discussed have been limited to metering systems and associated equipment found in common usage in the industry, specifically, nozzles, laminar flow devices, and vortex shedding. The procedure establishes accuracy goals as well as explains proper usage of equipment. The recommendations concerning diesel engine exhaust mass flow measurements are minimal in scope.
Standard

Instrumentation and Techniques for Exhaust Gas Emissions Measurement

2011-06-10
J254_201106
This SAE Recommended Practice establishes uniform laboratory techniques for the continuous and bag-sample measurement of various constituents in the exhaust gas of the gasoline engines installed in passenger cars and light-duty trucks. The report concentrates on the measurement of the following components in exhaust gas: hydrocarbons (HC), carbon monoxide (CO), carbon dioxide (CO2), oxygen (O2), and nitrogen oxides (NOx). NOx is the sum of nitric oxide (NO) and nitrogen dioxide (NO2). A complete procedure for testing vehicles may be found in SAE J1094. This document includes the following sections: 1. Scope 2. References 3. Emissions Sampling Systems 4. Emissions Analyzers 5. Data Analysis 6. Associated Test Equipment 7. Test Procedures
Standard

DIESEL SMOKE MEASUREMENT PROCEDURE

1973-01-01
J35_197301
The recommended practice applies to the dynamometer test procedure which can be used to assess the smoke emission characteristics of vehicular diesel engines. In particular, these procedures describe the smoke emissions test, smoke test cycle, equipment and instrumentation, instrument checks, and chart reading and calculation, for evaluation of an engine’s steady-state and transient smoke emission characteristics. A full-flow smoke opacimeter as opposed to other types of smokemeters is required because the test is designed to monitor transient smoke. Sampling type instruments have an excessive and variable delay and do not provide an accurate measurement of the engine’s transient smoke output. An Appendix shows that the Beer-Lambert law can be used to correlate opacity measurements with different meter path lengths. Additional or modified test conditions may be requested when this recommended practice is cited in a request for a smoke assessment.
Standard

DIESEL SMOKE MEASUREMENT PROCEDURE

1988-09-01
J35_198809
The recommended practice applies to the dynamometer test procedure which can be used to assess the smoke emission characteristics of vehicular diesel engines. In particular, this procedure describes the smoke test cycle, equipment and instrumentation, instrument checks, chart reading and calculation for evaluation of an engine’s transient smoke emission characteristic. In addition, this procedure offers guidelines to be used in establishing correlation between full flow in-line and end-of-line opacimeters. Since the type of test described here is transient in nature, a fast responding full flow opacimeter is required for the smoke measurements. Slow responding or sampling, or both, type instruments must not be used since they typically have excessive and variable response delays and do not provide an accurate measurement of an engine’s transient smoke characteristics.
Standard

Diesel Smoke Measurement Procedure

1995-03-01
J35_199503
This SAE Recommended Practice applies to the dynamometer test procedure which can be used to assess the smoke emission characteristics of vehicular diesel engines. In particular, this procedure describes the smoke test cycle, equipment and instrumentation, instrument checks, chart reading, and calculation for evaluation of an engine's transient smoke emission characteristic. In addition, this procedure offers guidelines to be used in establishing correlation between full flow in-line and end-of-line opacimeters. Since the type of test described here is transient in nature, a fast responding full flow opacimeter is required for the smoke measurements. Slow responding or sampling, or both, type instruments must not be used since they typically have excessive and variable response delays and do not provide an accurate measurement of an engine's transient smoke characteristics.
Standard

AUTOMATIC TRANSMISSION HYDRAULIC CONTROL SYSTEMS - TERMINOLOGY

1988-07-01
J648_198807
The following is a list of the most common terminology used in describing hydraulic control systems. The hydraulic control system of an automatic transmission may include oil pumps, pressure regulator, governor, and control valves.
Standard

Automatic Transmission Hydraulic Control Systems - Terminology

2011-06-13
J648_201106
The following is a list of the most common terminology used in describing hydraulic control systems. The hydraulic control system of an automatic transmission may include oil pumps, pressure regulator, governor, and control valves.
Standard

Automatic Transmission Hydraulic Control Systems—Terminology

2000-11-02
J648_200011
The following is a list of the most common terminology used in describing hydraulic control systems. The hydraulic control system of an automatic transmission may include oil pumps, pressure regulator, governor, and control valves.
X