Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Development of TOYOTA Reflex Burn (TRB) System in DI Diesel

1990-02-01
900658
In order to optimize air-fuel mixture formation in a small DI diesel engine, studies were conducted into the effects of combustion chamber shape and fuel spray impingement. Based on the findings of these studies, the shape of the combustion chamber was modified to induce complex air motion with high turbulence and fuel injection was carefully controlled to achieve optimum impingement intensity. As a result, the mixture formation process was greatly improved with a consequent gain in terms of engine performance. To clarify the reasons for this improvement in combustion, a three-dimensional calculation of the in-cylinder air motion was made. The behaviour of the spray and flame was observed using an endoscope. The new combustion system, named TOYOTA Reflex Burn system (TRB) thus developed has been adopted in production engines since August 1988.
Technical Paper

Two-Dimensional Temperature Measurements in Diesel Piston Bowl Using Phosphor Thermometry

2009-09-13
2009-24-0033
Phosphor thermometry was used during fuel injection in an optical engine with the glass piston of reentrant type. SiO2 coated phosphor particle was used for the gas-phase temperature measurements, which gave much less background signal. The measurements were performed in motored mode, in combustion mode with injection of n-heptane and in non-combustion mode with injection of iso-octane. In the beginning of injection period, the mean temperature of each injection cases was lower than that of the motored case, and temperature of iso-octane injection cases was even lower than that of n-heptane injection cases. This indicates, even if vaporization effect seemed to be the same at both injection cases, the effect of temperature decrease changed due to the chemical reaction effect for the n-heptane cases. Chemical reaction seems to be initiated outside of the fuel liquid spray and the position was moving towards the fuel rich area as the time proceeds.
Technical Paper

Flow and Temperature Distribution in an Experimental Engine: LES Studies and Thermographic Imaging

2010-10-25
2010-01-2237
Temperature stratification plays an important role in HCCI combustion. The onsets of auto-ignition and combustion duration are sensitive to the temperature field in the engine cylinder. Numerical simulations of HCCI engine combustion are affected by the use of wall boundary conditions, especially the temperature condition at the cylinder and piston walls. This paper reports on numerical studies and experiments of the temperature field in an optical experimental engine in motored run conditions aiming at improved understanding of the evolution of temperature stratification in the cylinder. The simulations were based on Large-Eddy-Simulation approach which resolves the unsteady energetic large eddy and large scale swirl and tumble structures. Two dimensional temperature experiments were carried out using laser induced phosphorescence with thermographic phosphors seeded to the gas in the cylinder.
Technical Paper

HCCI Combustion in DI Diesel Engine

2003-03-03
2003-01-0745
Ignition and combustion control of HCCI (Homogeneous Charge Compression Ignition) in DI (Direct Injection) Diesel Engine were examined. In this study, double injection technique was used by Common Rail injection system. The first injection was used as an early injection for fuel diffusion and to advance the changing of fuel to lower hydrocarbons (i.e. low temperature reaction). The second injection was used as an ignition trigger for all the fuel. It was found that the ignition of the premixed gas could be controlled by the second injection when the early injection was maintaining low temperature reaction. It was found that as the boost pressure increased, ignition timing advanced slightly and the rate of pressure increase markedly decreased. The rate of pressure increase is one of the factors concerning operation limit in this combustion. Therefore, the VNT (Variable Nozzle Turbo-charger) was applied to the production engine to allow boost pressure control.
Technical Paper

Numerical Analysis of Ignition Control in HCCI Engine

2003-05-19
2003-01-1817
The UNIBUS (Uniform Bulky Combustion System) based on the HCCI (Homogeneous Charge Compression Ignition) concept uses an early injection quantity, timing, boost pressure, EGR, etc. for ignition control [1]. To further expand the operation range from the present level, the effects of the atmospheric conditions on ignition and combustion were calculated using CHEMKIN in the present study. When controlling the start timing of the high temperature reaction to suppress the early ignition, it is more effective to apply EGR than boost pressure. If fuel quantity is increased to expand load, it is possible to suppress a sharp cylinder pressure rising rate by increasing the boost pressure. Furthermore, it has become apparent that the cause of this is an increase in heat capacity.
Technical Paper

A Study on Combustion Behavior of a Diesel Fuel Spray Impinging on a Wall

1996-02-01
960028
Combustion Characteristics of a diesel fuel spray impinging on a wall were studied, using a constant volume combustion vessel. Pressure and temperature inside the vessel. and fuel injection specification were set at the typical values of small DI diesel engines of 90-100 mm cylinder bore size. The indicated pressure analysis and combustion observation indicate that present analysis enables the evaluation of the mixture formation affected by impingement wall, corresponding to a small actual DI diesel engine. By lowering impingement wall temperature from 840 K to 620 K, ignition point shifts upstream along the spray from a portion near the wall, and ignition delay is shortened. Although ignition occurs earlier at shorter impingement length, its ignition time difference become less at shorter ignition delay condition, where, however, the heat release rate changes greatly and it gives a maximum at a certain impingement length.
Technical Paper

Development of Direct Injection Gasoline Engine - Study of Stratified Mixture Formation

1997-02-24
970539
Effects of spray characteristics for stratified combustion of direct injection gasoline engine have been researched. The highly functional piezoelectric (PZT) injector was selected for this research. A hole and swirl nozzle were examined in a wide range of fuel pressure. The hole nozzle aims to make stratified mixture formation by vaporizing fuel on the piston, and the swirl nozzle aims to do so in the air above the piston by utilizing the spray characteristic of lower penetration and higher dispersibility. Both sprays could realize stable stratified combustion. The stability mainly depends on the combination of spray characteristic and piston cavity shape, and the swirl air motion which strength changes corresponding to engine operating conditions. The hole nozzle requires high, and the swirl nozzle less fuel pressure. Even by a large amount of EGR, stratified combustion has the advantage of combustion stability, and is useful to reduce exhaust emissions, especially NOx emissions.
Technical Paper

A Study on the Behavior of a Fuel Droplet Injected into the Combustion Chamber of a Diesel Engine

1967-02-01
670468
In this study, the burning rate, burning lifetime, and flight distance of a fuel droplet injected into the combustion chamber were formulated, taking into consideration the effects of high air temperature and pressure, and of droplet relative velocity. It was confirmed by the experiment conducted that these formulas are valid, at least for a droplet in the tip of a puff of spray. They should provide strong clues to the theoretical determination of the minimum cylinder diameter suitable for small-size, direct injection diesel engines.
X