Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Concept of “Temperature Swing Heat Insulation” in Combustion Chamber Walls, and Appropriate Thermo-Physical Properties for Heat Insulation Coat

2013-04-08
2013-01-0274
The aim of this work is to investigate the possibility of heat insulation by “Temperature Swing”, that is temperature fluctuation, on combustion chamber walls coated with low-heat-conductivity and low-heat-capacity materials. Adiabatic engines studied in the 1980s, such as ceramic coated engines, caused constantly high temperature on combustion wall surface during the whole cycle including the intake stroke, even if it employed ceramic thermal barrier coating methods. This resulted in increase in NOx and Soot, decrease in volumetric efficiency and combustion efficiency, and facilitated the occurrence of engine knock. On the other hand, “Temperature Swing” coat on the combustion chamber walls leads to a large change in surface temperature. In this case, the surface temperature with this insulation coat follows the transient gas temperature, which decreases heat loss with the prevention of intake air heating, and also which is expected to prevent NOx and Soot from increasing.
Journal Article

Reduction of Heat Loss and Improvement of Thermal Efficiency by Application of “Temperature Swing” Insulation to Direct-Injection Diesel Engines

2016-04-05
2016-01-0661
The reduction of the heat loss from the in-cylinder gas to the combustion chamber wall is one of the key technologies for improving the thermal efficiency of internal combustion engines. This paper describes an experimental verification of the “temperature swing” insulation concept, whereby the surface temperature of the combustion chamber wall follows that of the transient gas. First, we focus on the development of “temperature swing” insulation materials and structures with the thermo-physical properties of low thermal conductivity and low volumetric heat capacity. Heat flux measurements for the developed insulation coating show that a new insulation material formed from silica-reinforced porous anodized aluminum (SiRPA) offers both heat-rejecting properties and reliability in an internal combustion engine. Furthermore, a laser-induced phosphorescence technique was used to verify the temporal changes in the surface temperature of the developed insulation coating.
Technical Paper

Development of Free Piston Engine Linear Generator System Part 2 - Investigation of Control System for Generator

2014-04-01
2014-01-1193
Free Piston Engine linear Generator (FPEG) that is thin and compact and has high efficiency and high fuel flexibility has been developed. The developed FPEG consists of a two-stroke combustion chamber, a linear generator, and a gas spring chamber. This paper focuses on the control logic of the linear generator, where the generator can be changed instantly to act as a driving motor, according to demand. Both the position and velocity of the piston are selected as feedback parameters for the control logic. The proposed feedback method realizes stable and robust control behavior with respect to abnormal combustion conditions, such as pre-ignition. In addition, the control logic must satisfy the following requirements. First, in order to achieve stable two-stroke combustion, the position of the piston is precisely controlled, especially near the top dead center (TDC) and the bottom dead center (BDC).
Technical Paper

Development of Free Piston Engine Linear Generator System Part 1 - Investigation of Fundamental Characteristics

2014-04-01
2014-01-1203
Free Piston Engine Linear Generator (FPEG) with features of thin and compact build, high efficiency and high fuel flexibility is developed. The FPEG consists of a two-stroke combustion chamber, a linear generator and a gas spring chamber. The key technologies to realize stable continuous operation are lubricating, cooling, and control logic. This paper proposes the original structure of the FPEG for enabling stable continuous operation. The main feature is a hollow circular step-shaped piston. The smaller-diameter side of the piston constitutes the combustion chamber, and the larger-diameter side constitutes the gas spring chamber. The larger cross-sectional area of the gas spring chamber leads to lower compression temperature of the gas spring chamber and consequently decreased heat loss. In addition, an oil cooling passage is built in the column stay, which ensures the enough cooling ability of the piston.
X