Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Effects of High-Response TiAl Turbine Wheel on Engine Performance under Transient Conditions

2015-09-01
2015-01-1881
Transient tests in a 2.0 liter in-line 4 cylinder downsizing gasoline direct injection engine were conducted under various transient conditions in order to investigate effects of lower rotational inertia of titanium aluminide alloy (TiAl) turbine wheel on engine and turbocharger performances. As a representative result, fast boost pressure build up was achieved in case of TiAl turbocharger compared to Inconel turbocharger. This result was mainly due to lower rotational inertia of TiAl turbine wheel. Engine torque build up response was also improved with TiAl turbocharger even though engine torque response gap between both turbochargers was slightly reduced due to retarded combustion phase. In addition, with advanced ignition timing, fuel consumption became less than that of Inconel turbocharger with similar engine torque response.
Journal Article

Characteristics of Turbocharger with TiAl Turbine Wheel in a Downsizing GDI Engine

2013-10-14
2013-01-2499
Steady and transient tests in a downsizing Gasoline Direct Injection (GDI) in-line 4 cylinders 2.0 liter engine were carried out to investigate characteristics of turbocharger with Titanium aluminide (TiAl) turbine wheel. The density of TiAl material is lower than Inconel 718 (Inconel) which is raw material for conventional turbine wheel. The objective of this study was to investigate the effect of light rotational inertia of turbine wheel on engine performance. Performance of TiAl turbine wheel turbocharger itself was also compared to that of Inconel turbine wheel turbocharger. Except for the turbine wheels, all experimental conditions were matched to be the same load and engine speed conditions. The compressor total-to-total pressure ratio of TiAl turbocharger was higher under part load condition due to higher turbocharger speed of TiAl turbocharger, which was led by lower rotational inertia of TiAl turbine wheel, while the engine performance was not much improved.
X