Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Wideband Multi-Service Automotive Antenna Conformed to a Curved Surface

2011-04-12
2011-01-0047
Vehicles produced in decades past were fitted with very few antennas. In most cases only an AM or FM antenna was required. In contrast to this, today's vehicles are fitted with a plethora of antennas to receive a wide variety of signals at a number of different frequencies. This work presents a wideband radiating structure capable of sending and receiving many of the signals required in a modern vehicle from a single device. The antenna is based on Planar Inverted Cone Antenna geometry. The effect of bending or curving the antenna substrate is investigated at values in the range that may be required for vehicular integration.
Journal Article

V2V Communication Quality: Measurements in a Cooperative Automotive Platooning Application

2014-04-01
2014-01-0302
This paper presents measurements on Vehicle to Vehicle (V2V) communication between participants in a platooning application. Platooning, according to the SARTRE concept, implies several vehicles travelling together in tight formation, with a manually driven heavy lead vehicle. The platoon being studied consists of five vehicles; two trucks in the lead and three passenger cars. The V2V-communication node in each vehicle contains an 802.11p radio at 5,9 GHz. It is used to send messages between vehicles to coordinate movements and maintain safety in the platoon. Another cooperative application that relies on V2V-communication is multiple UAVs flying in formation; as investigated in KARYON. This project also investigates cooperative autonomous vehicles. In both applications, V2V-communication is an enabling technology. Two metrics are studied to quantify the V2V-communication quality: system packet error rate and consecutive packet loss.
Journal Article

Multi-Notch Filter (MNF) Algorithm for Automotive Radio-Frequency (RF) Signal Processing and Applications

2014-04-01
2014-01-0264
The radio frequency (RF) filter is a well-known technique that has been used in communication systems for a long time. It is able to limit the selected band from receiving signals or transmitting signals. The filter can be a low-pass filter, high-pass filter, band-pass filter, and notch-filter or combined filters. This paper presents the unique Multi-Notch Filter (MNF) which takes advantages of the properties of “sinusoid wave” and “linear functions”. Since an automotive receiver is operated in noisy environments, this method is particularly useful to improve an automotive receiver's performance at the input stage when it immediately processes RF signals from an antenna. This type of filer can easily be implemented into an automotive receiver to notch out more unwanted frequency(s), such as harmonic frequencies, motor noise and very low frequencies (power line noise), which will result in better noise immunity for mobile receivers against noisy environments.
Journal Article

Development of Tool for Evaluation of Automotive Conformity of FM Receivers Using Two-Stage Method

2015-04-14
2015-01-0225
The suitability of FM radio receivers for automotive applications has conventionally been evaluated by evaluating the reception characteristics of broadcast waves while conducting repeated driving tests in a special test environment. Because the evaluation of sound quality while driving relies upon the auditory judgment of a limited range of test subjects, these tests present issues in terms of the reproducibility and objectivity of the evaluations. In order to resolve these issues, a method of evaluating the suitability of FM receivers for automotive applications through the creation of a virtual radio wave environment on a PC was developed (this has been termed the “Two-Stage method”). In the research described in this paper, the Two-Stage method was used to analyze the effect of multipath distortion on FM receivers when driving through arbitrary radio wave propagation environments.
Journal Article

Estimation of the Incoming Wave Characteristics by MUSIC Method Using Virtual Array Antenna

2015-04-14
2015-01-0222
Traditionally, the suitability of radio receivers and similar devices for automotive use has been evaluated by evaluating their reception characteristics in relation to transmitted waves via repeated driving tests. This method of evaluation presents issues in terms of reproducibility and objectivity. A method of evaluating the suitability of FM receivers for vehicle fitting using a virtual propagation environment created on a PC (termed the Two-Stage method) has been developed in order to address these issues. The major challenge in the Two-Stage method is the creation of an actual propagation environment on a PC. A test-based incoming wave estimation technology able to accurately estimate the characteristics of actual propagation environments is therefore essential. The estimation of incoming FM waves necessitates large array antennas. In addition, the incoming waves become coherent multipath waves.
Technical Paper

Structural Diffuse Field Excitation Synthesis by Synthetic Array (SFS-SA), Application to Cars Panels Contributions

2020-09-30
2020-01-1522
Diffuse field or turbulent boundary layer excitations of vehicles are of huge interest in automotive industry. For such excitations reverberation chambers or wind tunnels are necessary, this means high cost experiments. The idea of sound field synthesis to create the acoustic effect corresponding to diffuse field or turbulent boundary layer excitation, is of major interest to reduce drastically the cost of experiments. Originally, techniques based on loudspeakers antenna were used, however, a major difficulty appeared due to driving simultaneously a huge number of sources. To avoid this difficulty a new technique based on synthetic antenna is used here; instead of an array of loudspeakers, just one source is used for scanning the surface where the acoustic field excite the structure. A post processing step, based on plane wave decomposition, is then applied to collected experimental data in order to get the response of the structure or the sound transmission through the structure.
Journal Article

Structures of Flow Separation on a Passenger Car

2015-04-14
2015-01-1529
The phenomenon of three-dimensional flow separation is and has been in the focus of many researchers. An improved understanding of the physics and the driving forces is desired to be able to improve numerical simulations and to minimize aerodynamic drag over bluff bodies. To investigate the sources of separation one wants to understand what happens at the surface when the flow starts to detach and the upwelling of the streamlines becomes strong. This observation of a flow leaving the surface could be captured by investigating the limiting streamlines and surface parameters as pressure, vorticity or the shear stress. In this paper, numerical methods are used to investigate the surface pressure and flow patterns on a sedan passenger vehicle. Observed limiting streamlines are compared to the pressure distribution and their correlation is shown. For this investigation the region behind the antenna and behind the wheel arch, are pointed out and studied in detail.
Journal Article

Incoming Wave Estimation Characteristics by MUSIC Method Using a Virtual Array Antenna in Urban Reception Conditions

2016-04-05
2016-01-0077
We developed “Two-Stage Method” that makes it possible to evaluate the automotive suitability of FM receivers by generating a virtual radio wave environment on a PC. The major technological challenge for the Two-Stage Method was reproducing an actual radio wave environment on PC. It was necessary to estimate the characteristics of the FM radio wave environment in tests using the Multiple Signal Classification (MUSIC) method. However, when the MUSIC method is applied to FM reception, restrictions in factors including the number of array antenna elements and the occupied bandwidth result in issues of separation performance in relation to multipath waves in urban environments. We therefore developed a MUSIC Method using a virtual array antenna, making it possible to create combinations of numbers of array and sub-array elements as desired, thus boosting multipath wave separation performance. This development was reported at the 2015 SAE World Congress.
Journal Article

Performance of DSRC during Safety Pilot Model Deployment

2017-03-28
2017-01-0077
This paper provides an analysis of how communication performance between vehicles using Dedicated Short-range Communication (DSRC) devices varies by antenna mounting, vehicle relative positions and orientations, and between receiving devices. DSRC is a wireless technology developed especially for vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications. A frequency band near 5.9 GHz has been set aside in the US and other countries for exploring safety and other uses for road vehicles. DSRC devices installed onboard vehicles broadcast their location using global navigation space systems (GNSS), speed, heading, and other information. This can be used to study communication performance in many scenarios including: car-following situations, rear-end crash avoidance, oncoming traffic situations, left turn advisory, head-on crash avoidance and do-not-pass warnings.
Journal Article

Development of the All-Surface Plated Smart Handle Through In-Vapor Deposition Technology

2016-04-05
2016-01-0543
There are such outside door handles called smart handles which have a transmitting antenna, a lock/unlock sensor, and a sensor detection circuit, with which operation of door lock is possible just by "touching" the electrostatic-capacitance type sensor of the handles.As the design of the outside handles, body color painting and Cr plating are adopted. However, if plating is applied over the entire surface of a smart handle, electromagnetic waves transmitted from the antenna will be blocked since plating material is electrically conductive. In addition to this, touching a part other than the sensor may change the electrostatic-capacitance of the sensor, which results in unwanted functioning of the lock/unlock sensor. Because of this, only part of the handle, which does not hinder the transmission of electromagnetic waves and does not cause unwanted functioning, is covered by plating, that is called, "Partially plated specifications" (Figure 1).
Journal Article

Design of a 5.9 GHz High Directivity Planar Antenna Using Topology Optimization for V2V Applications

2017-03-28
2017-01-1691
A low profile high directivity antenna is designed to operate at 5.9 GHz for Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communications to ensure connectivity in different propagation channels. Patch antennas are still an ongoing topic of interest due to their advantages: low profile, low cost, and ease of fabrication. One disadvantage of the patch antenna is low directivity which results in low range performance. In this paper, we introduce an efficient and novel way to improve the directivity of patch antenna using topology optimization and design of experiments (DoE). Numerical simulations are done using Method of Moments (MoM) technique in the commercially available tool, FEKO. We use global response surface method (GRSM) for double objectives topology optimization. Numerical results show a promising use of topology optimization and DoE techniques for the systematic design of high directivity of low profile single element patch antennas.
Standard

Emc Antennas and Antenna Factors: How to Use Them

1999-01-01
CURRENT
AIR1509
This AIR discusses the use and application of EMC antennas and antenna factors. The relationships between antenna gain, antenna factor, power density (W/m2), and field strength (V/m) are discussed. Some examples of their use are given. Illustrations of commercially available EMC antennas commonly used in performing EMI measurements are included. In addition to the illustrations, the antenna factors, frequency ranges, typical uses (applications), and the manufacturers of these antennas are also listed.
Standard

GNSS NAVIGATION AND LANDING UNIT (GNLU)

2004-02-27
CURRENT
ARINC756-3
This standard describes the function of the GNLU, capable of providing enroute/terminal navigation, non-precision approach, and precision approach capabilities. The GNLS consists of a GNLU, associated controls and displays, antenna, and interfaces to other aircraft systems.
Journal Article

Dual Receiver with Phase and Switched Diversity for Background Processing and Reception Improvement

2008-04-14
2008-01-1059
This paper presents a cost-effective receiver system utilizing dual tuner antenna diversity. There are two modes of operation. In mode 1, the system is in phase diversity where two tuners operate harmoniously to minimize severe multipath distortion using beam pointing. In mode 2, the two tuners operate independently while still achieving reception improvement through intelligent antenna switching. This mode uses one tuner with two antenna switched diversity while the second tuner performs background processing. An advantage of this dual tuner architecture is the ability to provide concurrent multipath distortion reduction and background processing. An example of a digital FM receiver which embodies these functions is described.
Journal Article

Adaptive EKF-Based Estimator of Sideslip Angle Using Fusion of Inertial Sensors and GPS

2011-04-12
2011-01-0953
This paper presents an adaptive extended Kalman filter (EKF)-based sideslip angle estimator, which utilizes a sensor fusion concept that combines the high-rate inertial sensors measurements with the low-rate GPS velocity measurements. The sideslip angle estimation is based on a vehicle kinematic model relying on the lateral accelerometer and yaw rate gyro measurements. The vehicle velocity measurements from low-cost, single antenna GPS receiver are used for compensation of potentially large drift-like estimation errors caused by inertial sensors offsets. Adaptation of EKF state covariance matrix ensures a fast convergence of inertial sensors offsets estimates, and consequently a more accurate sideslip angle estimate.
Journal Article

DSRC Performance Comparison With and Without Antenna Diversity Using Different Transmission Power

2012-04-16
2012-01-0491
Vehicle-to-Vehicle (V2V) safety application research based on short range real-time communication has been researched for over a decade. Examples of V2V applications include Electronic Emergency Brake Light, Do Not Pass Warning, Lane Departure Warning, and Intersection Movement Assist. It is hoped that these applications, whether present as warning or intervention, will help reduce the incidence of traffic collisions, fatalities, injuries, and property damage. The safety benefits of these applications will likely depend on many factors, such as usability, market penetration, driver acceptance, and reliability. Some applications, such as DNPW and IMA, require a longer communication range to be effective. In addition, Dedicated Short Range Communications (DSRC) may be required to communicate without direct line of sight. The signal needs to overcome shadowing effects of other vehicles and buildings that are in the way.
Journal Article

Compliance with High-Intensity Radiated Fields Regulations - Emitter's Perspective

2012-10-22
2012-01-2148
NASA's Deep Space Network (DSN) uses high-power transmitters on its large antennas to communicate with spacecraft of NASA and its partner agencies. The prime reflectors of the DSN antennas are parabolic, at 34m and 70m in diameter. The DSN transmitters radiate Continuous Wave (CW) signals at 20 kW - 500 kW at X-band and S-band frequencies. The combination of antenna reflector size and high frequency results in a very narrow beam with extensive oscillating near-field pattern. Another unique feature of the DSN antennas is that they (and the radiated beam) move mostly at very slow sidereal rate, essentially identical in magnitude and at the opposite direction of Earth rotation.
Journal Article

Dual Antenna Diversity System for FM Reception

2013-04-08
2013-01-0165
This paper investigates the performance of digital implementation of dual antenna phase diversity system utilizing the Constant Modulus Algorithm (CMA) and Maximal Ratio Combiner (MRC) and proposes a two -antenna CMA/MRC hybrid algorithm for mobile FM reception. Simulation proved that CMA has superior performance in frequency selective multipath (long-delay) with medium and strong signal conditions. On the other hand, the MRC optimizes the Signal-to-Noise Ratio (SNR) output in weak signal conditions. The signal conditions are constantly changing in mobile environment, therefore the appropriate algorithm should be chosen dynamically to optimize signal reception.
Journal Article

Integrating Secure Beamforming into Car-to-X Architectures

2011-04-12
2011-01-0204
Intelligent networking of cars and infrastructure (Car-to-X, C2X) by means of dedicated short range communication represents one of the most promising attempts towards enhancement of active safety and traffic efficiency in the near future. Nevertheless, as an open and decentralized system, Car-to-X is exposed to various attacks against security and driver's privacy. This paper presents an approach for enhancing security and privacy on physical layer, i.e., already during sending and receiving of messages. This technique is called Secure Beamforming. In previous works we deployed a simulation-based approach for defining an antenna-array appropriate for most of the safety-related use cases as defined by the Car-to-Car Communication Consortium (C2C-CC). In this paper we demonstrate a concept for integrating Secure Beamforming into an overall Car-to-X system architecture.
Journal Article

Performance of Aftermarket (DSRC) Antennas Inside a Passenger Vehicle

2011-04-12
2011-01-1031
A vehicle's safety system capability can be enhanced by a cooperative Vehicle-to-Vehicle (V2V) system in which vehicles communicate their driving status data, such as location and speed, using a common Dedicated Short Range Communication (DSRC) protocol. The effectiveness of the V2V applications will depend on the number of the vehicles equipped. Market penetration significantly influences the effectiveness of V2V safety applications. Previous research indicated that it could take decades to reach 95% DSRC safety device penetration in the market if only the new vehicles are equipped with the DSRC transponders during manufacturing. In order to raise the market penetration of such technology in the foreseeable future and provide a safety benefit to the early adopters, a scenario that involves retrofit and aftermarket DSRC devices is suggested by U.S. Department of Transportation (USDOT).
X