Refine Your Search

null

Search Results

Viewing 1 to 10 of 10
Technical Paper

Improved thorax behavior of the EUROSID and effects on thorax injury assessment, on the basis of pendulum impacts

2001-06-04
2001-06-0141
In 1989, the EUROSID-1 was accepted in the European regulation ECE-R95. After a steady period of use, an upgraded version of this dummy: ES-2 is now considered as a step towards harmonization of side impact occupant regulations. The upgrades to the dummy include, amongst others, a modification of its torso back plate and a change in rib module guidance (piston-cylinder), especially to overcome anomalous rib deflection responses referred to as ""flat-top.'' Presented here are results of lateral and oblique pendulum tests, conducted on the EUROSID-1 and ES-2 to verify the modified torso back plate and to study the responses of three proposed rib module designs for ES-2. Particularly, rib deflections, rib VC responses, and thorax force-deflection responses are analyzed. The current study primarily addresses sensitivity of the ES-2 thorax to oblique loading.
Technical Paper

Biomechanics of Inertial Head-Neck Trauma: Role of Cervical Components

2002-03-19
2002-01-1445
Inertial loading of the head-neck complex occurs in rear impacts wherein the head and neck of the occupant are initially subjected to rearward forces. Epidemiological evidence exists to demonstrate the significance and societal impact of these injuries [4]. From a clinical perspective, trauma secondary to inertial loads belongs to the lower end of the Abbreviated Injury Scale, and no specific diagnostic techniques are available to quantitatively document the injury. Furthermore, identification of the mechanisms of injury and derivation of injury thresholds are limited. In fact, there is a paucity of literature focusing on the reproduction of rear impact-induced neck injuries due to a single-event rear impact. Because the impact acceleration is transmitted to the head from the torso via the cervical column, the components of the human neck play a role in the mechanics of trauma.
Technical Paper

Thoracic Biomechanics with Air Bag Restraint

1993-11-01
933121
The objective of the present study was to determine the biomechanics of the human thorax in a simulated frontal impact. Fourteen unembalmed human cadavers were subjected to deceleration sled tests at velocities of nine or 13 m/s. Air bag - knee bolster, air bag - lap belt, and air bag - three-point belt restraint systems were used with the specimen positioned in the driver's seat. Two chest bands were used to derive the deformation patterns at the upper and lower thoracic levels. Lap and shoulder belt forces were recorded with seatbelt transducers. After the test, specimens were evaluated using palpation, radiography, and a detailed autopsy. Thoracic trauma was graded according to the Abbreviated Injury Scale based on autopsy findings. Peak thoracic deformations were normalized with respect to the initial chest depth to facilitate comparison between the specimens.
Technical Paper

Analysis of Force Mitigation by Boots in Axial Impacts using a Lower Leg Finite Element Model

2020-03-31
2019-22-0011
Lower extremity injuries caused by floor plate impacts through the axis of the lower leg are a major source of injury and disability for civilian and military vehicle occupants. A collection of PMHS pendulum impacts was revisited to obtain data for paired booted/unbooted test on the same leg. Five sets of paired pendulum impacts (10 experiments in total) were found using four lower legs from two PMHS. The PMHS size and age was representative of an average young adult male. In these tests, a PMHS leg was impacted by a 3.4 or 5.8 kg pendulum with an initial velocity of 5, 7, or 10 m/s (42-288 J). A matching LS-DYNA finite element model was developed to replicate the experiments and provide additional energy, strain, and stress data. Simulation results matched the PMHS data using peak values and CORA curve correlations. Experimental forces ranged between 1.9 and 12.1 kN experimentally and 2.0 and 11.7 kN in simulation.
Technical Paper

Dynamic Responses of Intact Post Mortem Human Surrogates from Inferior-to-Superior Loading at the Pelvis

2014-11-10
2014-22-0005
During certain events such as underbody blasts due to improvised explosive devices, occupants in military vehicles are exposed to inferior-to-superior loading from the pelvis. Injuries to the pelvis-sacrum-lumbar spine complex have been reported from these events. The mechanism of load transmission and potential variables defining the migration of injuries between pelvis and or spinal structures are not defined. This study applied inferior-to-superior impacts to the tuberosities of the ischium of supine-positioned five post mortem human subjects (PMHS) using different acceleration profiles, defined using shape, magnitude and duration parameters. Seventeen tests were conducted. Overlay temporal plots were presented for normalized (impulse momentum approach) forces and accelerations of the sacrum and spine.
Technical Paper

Quantifying the Effect of Pelvis Fracture on Lumbar Spine Compression during High-rate Vertical Loading

2022-05-20
2021-22-0008
Fracture to the lumbo-pelvis region is prevalent in warfighters seated in military vehicles exposed to under-body blast (UBB). Previous high-rate vertical loading experimentation using whole body post-mortem human surrogates (PMHS) indicated that pelvis fracture tends to occur earlier in events and under higher magnitude seat input conditions compared to lumbar spine fracture. The current study hypothesizes that fracture of the pelvis under high-rate vertical loading reduces load transfer to the lumbar spine, thus reducing the potential for spine fracture. PMHS lumbo-pelvis components (L4-pelvis) were tested under high-rate vertical loading and force and acceleration metrics were measured both inferior-to and superior-to the specimen. The ratio of inferior-to-superior responses was significantly reduced by unstable pelvis fracture for all metrics and a trend of reduced ratio was observed with increased pelvis AIS severity.
Technical Paper

Three-Year-Old Child Out-Of-Position Side Airbag Studies

1999-10-10
99SC03
A series of twenty-nine tests was completed by conducting static deployment of side airbag systems to an out-of-position Hybrid III three-year-old dummy. Mock-ups (bucks) of vehicle occupant compartments were constructed. The dummy was placed in one of four possible positions for both door- and seat-mounted side airbag systems. When data from each type of position test were combined for the various injury parameters it was noted that the head injury criteria (HIC) were maximized for head and neck tests, and the chest injury parameters were maximized for the chest tests. For the neck injury parameters, however, all of the test positions produced high values for at least one of the parameters. The study concluded the following. Static out-of- position child dummy side airbag testing is one possible method to evaluate the potential for injury for worst-case scenarios. The outcome of these tests are sensitive to preposition and various measurements should be made to reproduce the tests.
Technical Paper

Thoraco-Abdominal Deflection Responses of Post Mortem Human Surrogates in Side Impacts

2012-10-29
2012-22-0002
The objective of the present study was to determine the thorax and abdomen deflections sustained by post mortem human surrogate (PMHS) in oblique side impact sled tests and compare the responses and injuries with pure lateral tests. Oblique impact tests were conducted using modular and non-modular load-wall designs, with the former capable of accommodating varying anthropometry. Tests were conducted at 6.7 m/s velocity. Deflection responses from chestbands were analyzed from 15 PMHS tests: five each from modular load-wall oblique, non-modular load-wall oblique and non-modular load-wall pure lateral impacts. The thorax and abdomen peak deflections were greater in non-modular load-wall oblique than pure lateral tests. Peak abdomen deflections were statistically significantly different while the upper thorax deflections demonstrated a trend towards significance.
Technical Paper

Human Foot-Ankle Injuries and Associated Risk Curves from Under Body Blast Loading Conditions

2017-11-13
2017-22-0006
Under body blast (UBB) loading to military transport vehicles is known to cause foot-ankle fractures to occupants due to energy transfer from the vehicle floor to the feet of the soldier. The soldier posture, the proximity of the event with respect to the soldier, the personal protective equipment (PPE) and age/sex of the soldier are some variables that can influence injury severity and injury patterns. Recently conducted experiments to simulate the loading environment to the human foot/ankle in UBB events (~5ms rise time) with variables such as posture, age and PPE were used for the current study. The objective of this study was to determine statistically if these variables affected the primary injury predictors, and develop injury risk curves. Fifty below-knee post mortem human surrogate (PMHS) legs were used for statistical analysis. Injuries to specimens involved isolated and multiple fractures of varying severity.
Technical Paper

Development of Side Impact Thoracic Injury Criteria and Their Application to the Modified ES-2 Dummy with Rib Extensions (ES-2re)

2003-10-27
2003-22-0010
Forty-two side impact cadaver sled tests were conducted at 24 and 32 km/h impact speeds into rigid and padded walls. The post-mortem human subjects were instrumented with accelerometers on the ribs and spine and chest bands around the thorax and abdomen to characterize their mechanical response during the impact. Load cells at the wall measured the impact force at the level of the thorax, abdomen, pelvis, and lower extremities. The resulting injuries were determined through detailed autopsy and radiography. Rib fractures with or without associated hemo/pneumo thorax or flail chest were the most common injury with severity ranging from AIS=0 to 5. Full and half thorax deflections were computed from the chest band data. The cadaver test data was analyzed using ANOVA and logistic regression. The age of the subject at the time of death had influence on injury outcome while gender and mass of the subject had little or no influence on injury outcome.
X