Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Siemens ELFA Drive System for Hybrid Electric Vehicles

2011-12-05
Concerned with fuel consumption and emissions, especially public transportation in urban areas, the ELFA electric drive system has been developed for hybrid bus applications. This modular system provides bus manufactures a cost effective solution with a maximum degree of design flexibility. Presenter Joshua Nelke, siemens industry inc.
Video

Flexible Real-Time Simulation of Truck and Trailer Configurations

2011-12-05
Real-time simulation of truck and trailer combinations can be applied to hardware-in-the-loop (HIL) systems for developing and testing electronic control units (ECUs). The large number of configuration variations in vehicle and axle types requires the simulation model to be adjustable in a wide range. This paper presents a modular multibody approach for the vehicle dynamics simulation of single track configurations and truck-and-trailer combinations. The equations of motion are expressed by a new formula which is a combination of Jourdain's principle and the articulated body algorithm. With the proposed algorithm, a robust model is achieved that is numerically stable even at handling limits. Moreover, the presented approach is suitable for modular modeling and has been successfully implemented as a basis for various system definitions. As a result, only one simulation model is needed for a large variety of track and trailer types.
Video

The Development of New Hino Hybrid Commercial Vehicles

2011-12-05
Today CFD is an important tool for engineers in the automotive industry who model and simulate fluid flow. For the complex field of Underhood Thermal Management, CFD has become a very important tool to engineer the cooling airflow process in the engine bay of vehicles. Presenter Peter Gullberg, Chalmers University of Technology
Video

All-Electric School Bus for Total Zero Emission

2012-04-10
Seven different suppliers will discuss their latest technologies. Panelist Jon Bereisa, Auto Lectrification LLC John Burgers, Dana Canada Corporation Derek De Bono, Valeo Dusan Graovac, Infineon Technologies AG Ronald P. Krupitzer, American Iron and Steel Institute Timothy J. Lawler, Bosch Corp. Ian M. Sharp, Flybrid Systems LLP
Video

Blue Bird Propane Powered Vision School Bus

2012-04-10
Propane autogas, the world?s third most-used engine fuel, powers vehicles, transit buses, and now school buses. Blue Bird has recently launched the Next Generation Vision type C school bus, powered by a ROUSH CleanTech liquid propane autogas fuel system and a Ford 6.8L V10 engine. The bus reduces operating costs by up to 40%, greenhouse gas emissions by up to 24%, and maintains the factory horsepower, torque, and towing capacity ratings. Learn about how school districts are saving over $.30 / mile using this clean, domestically-produced fuel. Presenter Brian Carney, Roush CleanTech.
Video

Spotlight on Design Insight: Dynamic Wireless Charging

2016-04-12
In “Dynamic Wireless Charging Technology”, an engineer from NextEnergy in Detroit, Michigan explains the difference between static and dynamic electric vehicle charging, indicating what future developments will look like. And a professor from the Korea Advanced Institute of Science and Technology/KAIST describes their experience with dynamically charging buses already in use in their campus. This episode highlights: The technology allowing vehicles to be charged while in motion, through wireless power transfer Why this type of technology will help make vehicles more efficient and easier to charge, as they will require smaller batteries How the OLEV (Online Electric Vehicle) works following the trail of power transmitting coils Also Available in DVD Format To subscribe to a full-season of Spotlight on Design, please contact SAE Corporate Sales: CustomerSales@sae.org or 1-888-875-3976.
Video

Impact of Auxiliary Loads on Fuel Economy and Emissions in Transit Bus Applications

2012-05-25
The first commercially available plug-in hybrid electric vehicle (PHEV), the General Motors (GM) Volt, was introduced into the market in mid-December 2010. The Volt uses a series-split powertrain architecture, which provides benefits over the series architecture that typically has been considered for use in electric-range extended vehicles (EREVs). A specialized EREV powertrain, called the Voltec, drives the Volt through its entire range of speed and acceleration with battery power alone and within the limit of battery energy, thereby displacing more fuel with electricity than a PHEV, which characteristically blends electric and engine power together during driving. This paper assesses the benefits and drawbacks of these two different plug-in hybrid electric architectures (series versus series-split) by comparing component sizes, system efficiency, and fuel consumption over urban and highway drive cycles.
Video

Vehicle Duty Cycles and Their Role in the Design and Evaluation of Advanced Vehicle Technologies

2012-04-10
Understanding in-use fleet operating behavior is of paramount importance when evaluating the potential of advanced/alternative vehicle technologies. Accurately characterizing real world vehicle operation assists in properly allocating advanced technologies, playing a role in determining initial payback period and return on investment. In addition, this information contributes to the design and deployment of future technologies as the result of increased awareness regarding tractive power requirements associated with typical operating behavior. In this presentation, the concept of vehicle duty cycles and their relation to advanced technologies will be presented and explored. Additionally, current research attempts to characterize school bus operation will be examined, and existing computational analysis and evaluation tools associated with these efforts discussed. Presenter Adam Duran, National Renewable Energy Laboratory
Video

Hybrid, Plug-In Hybrid, and Electric School Buses. Where and when?

2012-04-10
This talk will describe the nuances of a number of different types of driveline and how these will perform in the school bus marketplace. We will cover the results of the Plug-In School Bus program and some of the successes and challenges seen in those buses. Finally, we will discuss a vision for where the market is likely to go on the next 5-10-and 20 years. Presenter Ewan Pritchard, North Carolina State Univ.
Video

Propane Autogas: The Clear Choice

2012-04-10
The presentation by Tucker Perkins, President of CleanFUEL USA, provides important information to those wanting to learn about alternative fuels, specifically propane autogas. CleanFUEL USA provides liquid propane injection engine system for the 6L engine in the GM G4500 cutaway chassis used in many Type A busses. They are also developing an 8L engine in partnership with Freightliner/ThomasBuilt Bus for the Type C bus. This presentation discussed many of the advantages of propane autogas use, such as better economics, lower emissions, and inexpensive infrastructure for the fueling network. Presenter Tucker Perkins, CleanFUEL USA
Video

Powertrain Innovation Requires Infrastructure Innovation!

2012-04-10
Who are the people who know the most about the buses in your fleet? They are most likely the operators and the servicing technicians. They are also the key people whose knowledge, level of training and attitude can determine the success or failure of new powertrain technologies. Training and recruitment of both need to be held to a higher standard than we have seen in the past. I will argue that even the culture of those involved in fleet operations needs to be changed. The bar for technical competence and product knowledge needs to be raised for operators and technicians. In return managers should find ways to include them as stakeholders, investing them with both additional responsibility and accountability. This will require greater access to training and recognition of achievement. Where are the busses stored and serviced? Most likely in an all-purpose state/county/municipal service facility servicing a variety of equipment.
Video

Natural Gas for School Buses: A Case for Using the Only Domestically Produced Alternative Fuel

2012-04-10
A review of the processes that lead to the conclusion that CNG was the best solution for the fleet, including the efforts to gain public support for alternative fuels for school buses. MISD is now home for 42 CNG powered school buses (of 200). The presentation will include training and design tips for safety and smooth operations along with maintenance considerations for using CNG. Alternative fuels, the dilemma of which comes first - refueling station or operational buses ? has an impact on grant approval and funding, bearing discussion of the option of a public/private model. Unlike other alternative fuels, CNG has a national security impact Presenter Charles Stone, Mansfield Indep School Dist
Journal Article

Hewing Out Evacuation Routes for Burning Buses by Linear-Shaped Charge Jet

2019-01-25
Abstract In recent years, several buses have ignited in some cities in China, causing numerous deaths and significant property damage. However, few research studies have been conducted to deal with such accidents. Therefore, in this work, a linear-shaped charge jet with rectangular cross sections was used to hew out evacuation routes for burning buses, and the parameter design for the shaped charge jet was improved according to asymmetry limitations and human tolerance. A numerical finite element simulation model of the behavior of a jet penetrating the jambs was established using ANSYS/LS-DYNA software. The asymmetrical characteristics of an arc segment in the structure of a rectangular-shaped charge were analyzed, in addition to the influence on the deviations of the jet penetration capacity and blast injuries to occupants caused by the side effects of detonation.
Journal Article

On WTW and TTW Specific Energy Consumption and CO2 Emissions of Conventional, Series Hybrid and Fully Electric Buses

2018-04-17
Abstract Making use of a specifically designed dynamical vehicle model, the authors here presented the results of an activity for the evaluation of energy consumption and CO2 emissions of buses for urban applications. Both conventional and innovative (series hybrid, and fully electric) vehicles were considered to obtain interesting comparative conclusions. The derived tool was used to simulate the dynamical behaviour of these vehicles on a number of kinematic profiles measured during real buses operation in different contexts, varying from really congested city centre routes to fast-lane operated services. It was so possible to evaluate the energetic performances of those buses on a Tank-to-Wheel (TTW) basis.
Journal Article

A Heavy Tractor Semi-Trailer Stability Control Strategy Based on Electronic Pneumatic Braking System HIL Test

2019-10-15
Abstract Aiming to improve the handling performance of heavy tractor semi-trailer during turning or changing lanes at high speed, a hierarchical structure controller is proposed and a hardware-in-the-loop (HIL) test bench of the electronic pneumatic braking system is developed to validate the proposed controller. In the upper controller, a Kalman filter observer based on the heavy tractor semi-trailer dynamic model is used to estimate the yaw rates and sideslip angles of the tractor and trailer. Simultaneously, a sliding mode direct yaw moment controller is developed, which takes the estimated yaw rates and sideslip angles and the reference values calculated by the three-degrees-of-freedom dynamic model of the heavy tractor semi-trailer as the control inputs. In the lower controller, the additional yaw moments of tractor and trailer are transformed into corresponding wheel braking forces according to the current steering characteristics.
Journal Article

Development, Testing, and Assessment of a Kinematic Path-Following Model for Towing Vehicle Systems

2019-01-07
Abstract A kinematic path-following model is developed based on an existing modeling framework established by the authors [1, 2] for prediction of the paths of towing vehicle systems. The presented path-following model determines the path of the towing vehicle using the vehicle’s speed and acceleration data collected by an inertial measurement unit (IMU). An Ackerman steering model was presented to calculate instantaneous directional angles and radii for each towed vehicle based on its geometric data and steering angle. In that model the off-tracking effect is properly captured. A 1:4 scale model for a towing vehicle system was built to test the developed steering model, and it was found that the angles and radii of the towing vehicle and each towed unit calculated using the Ackerman steering model agreed very well with those measured from the scale model.
Journal Article

Conceptualization and Modeling of a Flywheel-Based Regenerative Braking System for a Commercial Electric Bus

2019-11-19
Abstract The following article illustrates the detailed study of the development of a unique flywheel-based regenerative braking system (f-RBS) for achieving regenerative braking in a commercial electric bus. The f-RBS is designed for installation in the front wheels of the bus. The particular data values for modeling the bus are taken from multiple legitimate sources to illustrate the development strategy of the regenerative braking system. Mechanical components used in this system have either been carefully designed and analyzed for avoiding fatigue failure or their market selection strategies explained. The positioning of the entire system is decided using MSC Adams View®, hence determining a suitable component placement strategy such that the f-RBS components do not interfere with the bus components. The entire system is modeled on MATLAB Simulink® with sufficient accuracy to get various results that would infer the performance of the system as a whole.
Journal Article

Stability Analysis of Combined Braking System of Tractor-Semitrailer Based on Phase-Plane Method

2018-06-04
Abstract An analysis method for the stability of combined braking system of tractor-semitrailer based on phase-plane is investigated. Based on a 9 degree of freedom model, considering longitudinal load transfer, nonlinear model of tire and other factors, the braking stability of tractor-semitrailer is analyzed graphically on the phase plane. The stability of both tractor and semitrailer with different retarder gear is validated with the energy plane, β plane, yaw angle plane and hinged angle plane. The result indicates that in the long downhill with curve condition, both tractor and semitrailer show good stability when retarder is working at 1st and 2nd gear, and when it is at 3rd gear, the tractor is close to be unstable while semitrailer is unstable already. Besides, tractor and semitrailer both lose stability when retarder is working at the 4th gear.
Journal Article

Assessing Road Load Coefficients of a Semi-Trailer Combination Using a Mechanical Simulation Software with Calibration Corrections

2019-01-07
Abstract The study of road loads on trucks plays a major role in assessing the effect of heavy-vehicle design on fuel conservation measures. Coastdown testing with full-scale vehicles in the field offers a good avenue to extract drag components, provided that random instrumentation faults and biased environmental conditions do not introduce errors into the results. However, full-scale coastdown testing is expensive, and environmental biases which are ever-present are difficult to control in the results reduction. Procedures introduced to overcome the shortcomings of full-scale field testing, such as wind tunnels and computational fluid dynamics (CFD), though very reliable, mainly focus on estimating the effects of aerodynamic drag forces to the neglect of other road loads which should be considered.
Journal Article

Enhanced Lateral and Roll Stability Study for a Two-Axle Bus via Hydraulically Interconnected Suspension Tuning

2018-11-19
Abstract The suspension system has been shown to have significant effects on vehicle performance, including handling, ride, component durability, and even energy efficiency during the design process. In this study, a new roll-plane hydraulically interconnected suspension (HIS) system is proposed to enhance both roll and lateral dynamics of a two-axle bus. The roll-plane stability analysis for the HIS system has been intensively explored in a number of studies, while only few efforts have been made for suspension tuning, especially considering lateral plane stability. This article aims to explore the integrated lateral and roll dynamics by suspension tuning of a two-axle bus equipped with HIS system. A ten-degree-of-freedom (DOF) lumped-mass vehicle model is integrated with either transient mechanical-hydraulic model for HIS or the traditional suspension components, namely, shock absorber and anti-roll bar (ARB).
X