Refine Your Search

Topic

Search Results

Viewing 1 to 13 of 13
Journal Article

Experimental and Numerical Evaluation of Diesel Spray Momentum Flux

2009-11-02
2009-01-2772
In the present work, an experimental and numerical analysis of high pressure Diesel spray evolution is carried out in terms of spray momentum flux time history and instantaneous injection rate. The final goal of spray momentum and of injection rate analyses is the evaluation of the nozzle outlet flow characteristics and of the nozzle internal geometry possible influences on cavitation phenomena, which are of primary importance for the spray evolution. Further, the evaluation of the flow characteristics at the nozzle exit is fundamental in order to obtain reliable boundary conditions for injection process 3D simulation. In this paper, spray momentum data obtained in ambient temperature, high counter-pressure conditions at the Perugia University Spray Laboratory are presented and compared with the results of 3D simulations of the momentum rig itself.
Technical Paper

Experimental and Numerical Investigation of the Flow Field Effect on Arc Stretching for a J-type Spark Plug

2021-09-05
2021-24-0020
Nowadays internal combustion engines can operate under lean combustion conditions to maximize efficiency, as long as combustion stability is guaranteed. The robustness of combustion initiation is one of the main issues of actual spark-ignition engines, especially at high level of excess-air or dilution. The enhancement of the in-cylinder global motion and local turbulence is an effective way to increase the flame velocity. During the ignition process, the excessive charge motion can hinder the spark discharge and eventually cause a misfire. In this perspective, the interaction between the igniter and the flow field is a fundamental aspect which still needs to be explored in more detail to understand how the combustion originates and develops. In this work, a combined experimental and numerical study is carried out to investigate the flow field around the spark gap, and its effect on the spark discharge evolution.
Technical Paper

Engine Knock Evaluation Using a Machine Learning Approach

2020-09-27
2020-24-0005
Artificial Intelligence is becoming very important and useful in several scientific fields. Machine learning methods, such as neural networks and decision trees, are often proposed in applications for internal combustion engines as virtual sensors, faults diagnosis systems and engine performance optimization. The high pressure of the intake air coupled with the demand of lean conditions, in order to reduce emissions, have often close relationship with the knock events. Fuels autoignition characteristics and flame front speed have a significant impact on knock phenomenon, producing high internal cylinder pressures and engine faults. The limitations in using pressure sensors in the racing field and the challenge to reduce the costs of commercial cars, push the replacement of a hardware redundancy with a software redundancy.
Technical Paper

Performance and Emissions of a Common Rail DI Diesel Engine Using Fossil and Different Bio-Derived Fuels

2001-05-07
2001-01-2017
The recent introduction of electronic controlled, high pressure injection systems has deeply changed the scenario for light duty, automotive diesel engines. This change is mainly due to the enhanced flexibility in obtaining the desired injection law (time history and injected fuel quantity), while high injection pressures also favour a suitable mixture formation. This results in higher engine performance (efficiency and power) and in better pollutant emissions control. At the same time, in order to reduce the greenhouse gases net production, research is analyzing alternative resources, such as bio-derived fuels. In particular, methyl esters derived by different vegetable oils are characterized by high cetane numbers and very small sulfur content. The present work reports the results of a comparative analysis performed on a modern DI, common-rail, turbocharged engine by using three different bio-derived fuels (rape seed, soybean, waste cooked oil) and conventional fossil diesel fuel.
Technical Paper

Dependence of Flow Characteristics of a High Performance S.I. Engine Intake System on Test Pressure and Tumble Generation Conditions - Part 2: Numerical Analysis

2004-03-08
2004-01-1531
The design of new geometries of combustion chambers together with the design of improved intake systems are some of the most important applied research activities that attempt to improve the complex processes underlying combustion. The design and the analysis of new optimized geometries which use numerical simulations, based on a commercial CFD code utilization, seems to be a very interesting way to reduce the industrial costs in the engines developing activity. In the present work, steady state simulations of an intake system of a race engine head of Ducati Corse , using a commercial 3D-CFD code, are carried out to tune the parameters of the used models and to analyze different configurations. The models validation is based on the experimental results obtained from a parallel paper concerning the Tumble Coefficient (Nt) and the Discharge Coefficient (Cd) obtained using two configurations: with an L-shaped tumble adaptor and a standard one.
Technical Paper

Analysis of RF Corona Ignition in Lean Operating Conditions Using an Optical Access Engine

2017-03-28
2017-01-0673
Radio Frequency Corona ignition systems represent an interesting solution among innovative ignition strategies for their ability to stabilize the combustion and to extend the engine operating range. The corona discharge, generated by a strong electric field at a frequency of about 1 MHz, produces the ignition of the air-fuel mixture in multiple spots, characterized by a large volume when compared to a conventional spark, increasing the early flame growth speed. The transient plasma generated by the discharge, by means of thermal, kinetic and transport effects, allows a robust initialization of the combustion even in critical conditions, such as using diluted or lean mixtures. In this work the effects of Corona ignition have been analyzed on a single cylinder optical engine fueled with gasoline, comparing the results with those of a traditional single spark ignition.
Technical Paper

Numerical Analysis of a New Concept Variable Valve Actuation System

2006-09-14
2006-01-3008
The present work concerns the analysis of a concept for a new variable valve actuation system for internal combustion engines, denoted HVC (Hydraulic Valve Control system). The system is an electro-hydraulic device which aims at minimizing the power consumption required for the valve actuation. Unlike lost motion devices, where the excess pumped oil is wasted in order to control the lift profile, the HVC system uses a reduced quantity of energy to ensure the actual lift profile. For that reason interesting potentialities to increase the global fuel conversion efficiency of the engine are expected, in addition to the benefits deriving from the control flexibility. The HVC system has been modeled by means of an hydraulic simulation tool, useful for the dynamic analysis of mechanical and hydraulic systems. In this work the main elements of the device will be described and their relevant modeling parameters will be discussed.
Technical Paper

Modeling Diesel Engine Using KIVA II 3D-Code: Validation of a New Global Combustion Model and its Sensitivity to the Spatial Discretization

1996-02-01
960872
The present work consists of two main parts: the first part deals with the simulation, with the aid of a modified version of the KIVA-II code, of the global combustion process in a compression ignition engine with direct injection; the second part describes the sensitivity of the code to spatial discretization. The results obtained from the-simulations of the entire analysis are discussed in relation to the experimental data relevant to a DI unit of medium displacement Ruggerini RP 170. The first part of this work describes some of the considerable changes made to the combustion model of the original KIVA-II code. These changes have remarkably improved the code's ability in simulating the overall combustion process.
Technical Paper

On Board Diagnosis of Internal Combustion Engines: A New Model Definition and Experimental Validation

1997-02-24
970211
In recent years there has been an increasing worldwide effort to limit polluting emissions from road vehicles. The On Board II Diagnostic (OBD II) regulations adopted by California Air Resources Board (CARB) are among the most restrictive rules. They require on-board devices which monitor emission control systems in order to identify deterioration or malfunction of components. For automotive purpose, the high cost of achieving hardware redundancy can be reduced by substituting software redundancy. This approach requires an engine model definition. In this work the application of the Artificial Neural Networks (ANNs) technology, is analyzed and validated by experiments. First model has been tested under varying load conditions with very encouraging results.
Technical Paper

Pressure and Flow Field Effects on Arc Channel Characteristics for a J-type Spark Plug

2022-03-29
2022-01-0436
Lean operation of spark ignition engines is a promising strategy for increasing thermal efficiency and minimize emissions. Variability on the other hand is one of the main shortcomings in these conditions. In this context, the present study looks at the interaction between the spark produced by a J-type plug and the surrounding fluid flow. A combined experimental and numerical approach was implemented so as to provide insight into the phenomena related to the ignition process. A sweep of cross-flow velocity of air was performed on a dedicated test rig that allowed accurate control of the volumetric flow and pressure. This last parameter was varied from ambient to 10 bar, so as to investigate conditions closer to real-world engine applications. Optical diagnostics were applied for better characterization of the arc in different operating conditions. The spatial and temporal evolution of the arc was visualized with high-speed camera to estimate the length, width and stretching.
Technical Paper

Combustion Behavior of an RF Corona Ignition System with Different Control Strategies

2018-04-03
2018-01-1132
It has been proved that Radio Frequency Corona, among other innovative ignition systems, is able to stabilize combustion and to extend the engine operating range in lean conditions, with respect to conventional spark igniters. This paper reports on a sensitivity analysis on the combustion behavior for different values of Corona electric control parameters (supply voltage and discharge duration). Combustion analysis has been carried out on a single cylinder PFI gasoline-fueled optical engine, by means of both indicating measurements and imaging. A high-speed camera has been used to record the natural luminosity of premixed flames and the obtained images have been synchronized with corresponding indicating acquisition data. Imaging tools allowed to observe and measure the early flame development, providing information which are not obtainable by a pressure-based indicating system.
Technical Paper

Numerical Investigation of Water Injection Effects on Flame Wrinkling and Combustion Development in a GDI Spark Ignition Optical Engine

2021-04-06
2021-01-0465
The new real driving emission cycles and the growing adoption of turbocharged GDI engines are directing the automotive technology towards the use of innovative solutions aimed at reducing environmental impact and increasing engine efficiency. Water injection is a solution that has received particular attention in recent years, because it allows to achieve fuel savings while meeting the most stringent emissions regulations. Water is able to reduce the temperature of the gases inside the cylinder, coupled with the beneficial effect of preventing knock occurrences. Moreover, water dilutes combustion, and varies the specific heat ratio of the working fluid; this allows the use of higher compression ratios, with more advanced and optimal spark timing, as well as eliminating the need of fuel enrichment at high load. Computational fluid dynamics simulations are a powerful tool to provide more in-depth details on the thermo-fluid dynamics involved in engine operations with water injection.
Technical Paper

Large Eddy Simulation of Ignition and Combustion Stability in a Lean SI Optical Access Engine

2019-09-09
2019-24-0087
Large-Eddy simulations (LES) are becoming an engineering tool for studying internal combustion engines (ICE) thanks to their ability to capture cycle-to-cycle variability (CCV) resolving most of the turbulent flow structures. ICEs can operate under lean combustion conditions to maximize efficiency. However, instabilities associated with lean combustion may cause problems, such as excessive levels of CCV or even misfires. In this context, the energy released by the spark during the ignition and its interaction with the flow field are fundamental parameters that affect ignition stability and how combustion takes place and develops. The aim of this paper is the characterization of the combustion stability in a SI optical access engine, by means of multicycle LES simulations, using CONVERGE software. Sub-grid-scale turbulence is modeled with a viscous one-equation model.
X