Refine Your Search

Search Results

Viewing 1 to 10 of 10
Standard

Recommended Practice for Testing Performance of PEM Fuel Cell Stack Sub-system for Automotive Applications

2007-11-05
HISTORICAL
J2617_200711
This recommended practice is intended to serve as a procedure to verify the functional performance, design specifications or vendor claims of any PEM (Proton Exchange Membrane) type fuel cell stack sub-system for automotive applications. In this document, definitions, specifications, and methods for the functional performance characterization of the fuel cell stack sub-system are provided. The functional performance characterization includes evaluating electrical outputs and controlling fluid inputs and outputs based on the test boundary defined in this document. In this document, a fuel cell stack sub-system is defined to include the following: Fuel cell stack(s) – An assembly of membrane electrode assemblies (MEA), current collectors, separator plates, cooling plates, manifolds, and a supporting structure. Connections for conducting fuels, oxidants, cooling media, inert gases and exhausts. Electrical connections for the power delivered by the stack sub-system.
Standard

Testing Performance of the Fuel Processor Subsystem of an Automotive Fuel Cell System

2011-08-12
CURRENT
J2616_201108
This recommended practice is intended to serve as a design verification procedure and not a product qualification procedure. It may be used to verify design specifications or vendor claims. Test procedures, methods and definitions for the performance of the fuel processor subsystem (FPS) of a fuel cell system (FCS) are provided. Fuel processor subsystems (FPS) include all components required in the conversion of input fuel and oxidizer into a hydrogen-rich product gas stream suitable for use in fuel cells. Performance of the fuel processor subsystem includes evaluating system energy inputs and useful outputs to determine fuel conversion efficiency and where applicable the overall thermal effectiveness. Each of these performance characterizations will be determined to an uncertainty of less than ± 2% of the value. The method allows for the evaluation of fuel processor subsystems for two general cases.
Standard

Recommended Practice for Testing Performance of PEM Fuel Cell Stack Sub-system for Automotive Applications

2011-08-12
CURRENT
J2617_201108
This recommended practice is intended to serve as a procedure to verify the functional performance, design specifications or vendor claims of any PEM (Proton Exchange Membrane) type fuel cell stack sub-system for automotive applications. In this document, definitions, specifications, and methods for the functional performance characterization of the fuel cell stack sub-system are provided. The functional performance characterization includes evaluating electrical outputs and controlling fluid inputs and outputs based on the test boundary defined in this document. In this document, a fuel cell stack sub-system is defined to include the following: Fuel cell stack(s) – An assembly of membrane electrode assemblies (MEA), current collectors, separator plates, cooling plates, manifolds, and a supporting structure. Connections for conducting fuels, oxidants, cooling media, inert gases and exhausts. Electrical connections for the power delivered by the stack sub-system.
Standard

Testing Performance of Fuel Cell Systems for Automotive Applications

2005-01-05
HISTORICAL
J2615_200501
This recommended practice is intended to provide a framework for performance testing of fuel cell systems (FCS’s) designed for automotive applications with direct current (DC) output. The procedures described allow for measurement of performance relative to claims by manufacturers of such systems with regard to the following performance criteria. — Power — Efficiency — Transient Response — Start and Stop Performance — Physical Description — Environmental Limits — Operational Requirements — Integration Since this recommended practice is based on the principal of performance measurement relative to a claim, the testing parties should take care to include any qualifying or unique circumstances leading to the test results reported in order to achieve full disclosure. For example, efficiency as defined in section 3.1.9 allows for the inclusion of thermal output benefit.
Standard

Testing Performance of Fuel Cell Systems for Automotive Applications

2011-10-20
CURRENT
J2615_201110
This recommended practice is intended to provide a framework for performance testing of fuel cell systems (FCS’s) designed for automotive applications with direct current (DC) output. The procedures described allow for measurement of performance relative to claims by manufacturers of such systems with regard to the following performance criteria. — Power — Efficiency — Transient Response — Start and Stop Performance — Physical Description — Environmental Limits — Operational Requirements — Integration Since this recommended practice is based on the principal of performance measurement relative to a claim, the testing parties should take care to include any qualifying or unique circumstances leading to the test results reported in order to achieve full disclosure. For example, efficiency as defined in section 3.1.9 allows for the inclusion of thermal output benefit.
Standard

Hydrogen Fuel Quality for Fuel Cell Vehicles

2011-09-20
HISTORICAL
J2719_201109
This Standard provides background information and a hydrogen fuel quality standard for commercial proton exchange membrane (PEM) fuel cell vehicles. This Report also provides background information on how this standard was developed by the Hydrogen Quality Task Force (HQTF) of the Interface Working Group (IWG) of the SAE Fuel Cell Standards Committee.
Standard

Information Report on the Development of a Hydrogen Quality Guideline for Fuel Cell Vehicles

2008-04-18
HISTORICAL
J2719_200804
This Information Report provides interim background information and an interim specification of hydrogen fuel quality for commercial proton exchange membrane (PEM) fuel cell vehicles. This Report also provides background information on how this interim specification was developed by the Hydrogen Quality Task Force (HQTF) of the Interface Working Group (IWG) of the SAE Fuel Cell Standards Committee. The constituents and thresholds listed in Table 1 are based on a survey of the industry, the published literature and reflects current and draft analytical test methods. Some of the allowable constituent levels are higher than desired because a published detection method is not available for the desired threshold. Some of the allowable constituent levels may be lower than desired due to incomplete evaluations and/or an attempt to minimize testing costs (such as including methane in total hydrocarbons).
Standard

Information Report on the Development of a Hydrogen Quality Guideline for Fuel Cell Vehicles

2005-11-10
HISTORICAL
J2719_200511
This Information Report provides interim background information and an interim specification of hydrogen fuel quality for commercial proton exchange membrane (PEM) fuel cell vehicles. This Report also provides background information on how this interim specification was developed by the Hydrogen Quality Task Force (HQTF) of the Interface Working Group (IWG) of the SAE Fuel Cell Standards Committee. The constituents and thresholds listed in table 1 are based on a survey of the industry, the published literature and reflects current and draft analytical test methods. Some of the allowable constituent levels are higher than desired because a published detection method is not available for the desired threshold. Some of the allowable constituent levels may be lower than desired due to incomplete evaluations and/or an attempt to minimize testing costs (such as including methane in total hydrocarbons).
Standard

Hydrogen Fuel Quality for Fuel Cell Vehicles

2015-11-11
HISTORICAL
J2719_201511
This Standard provides background information and a hydrogen fuel quality standard for commercial proton exchange membrane (PEM) fuel cell vehicles. This Report also provides background information on how this standard was developed by the Hydrogen Quality Task Force (HQTF) of the Interface Working Group (IWG) of the SAE Fuel Cell Standards Committee.
Standard

Hydrogen Fuel Quality for Fuel Cell Vehicles

2020-03-18
CURRENT
J2719_202003
This standard provides background information and a hydrogen fuel quality standard for commercial proton exchange membrane (PEM) fuel cell vehicles. This report also provides background information on how this standard was developed by the Hydrogen Quality Task Force (HQTF) of the Interface Working Group (IWG) of the SAE Fuel Cell Standards Committee.
X