Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Development of an Electrically-driven Intelligent Brake Unit

2012-02-16
An electrically-driven, intelligent brake unit has been developed, to be combined with a regenerative braking system in electric vehicles (EVs) and hybrid electric vehicles (HEVs) which went into production in 2010 - 11. The brake pedal force is assisted by an electrically driven motor, without using vacuum pressure, unlike conventional braking systems. The actuator can be implemented to coordinate with a regenerative braking system, and to have adjustable pedal feel through use of a unique pressure-generating mechanism and a pedal-force compensator. In this paper, we describe features of the actuator mechanism and performance test results Presenter Yukio Ohtani, Hitachi Automotive Systems
Video

Real time Renewable Energy Availability for EV Charging

2012-03-29
Main topics are the development and the build-up of an 18ton hybrid truck with a parallel hybrid drivetrain. With this truck it is possible to drive up to 3 kilometers in the pure electric driving mode. Presenter Andreas Eglseer, Engineering Center Steyr GmbH & Co. KG
Video

Data Driven Testing for HIL Systems

2011-12-05
The amount of software, computation and logic embedded into the vehicle systems is increasing. Testing of complex real time embedded systems using Hardware in Loop (HIL) simulations across different vehicle platforms has been a challenge. Data driven testing enables a qualitative approach to test these complex vehicle systems. It consists of a test framework wherein the test logic and data are independent of the HIL test environment. The data comprises variables used for both input values and output verification values. This data is maintained in a database or in the form of tables. Each row defines an independent test scenario. The entire test data is divided into three categories, High, Medium and Low. This feature gives the advantage of leveraging the same set of test data from Unit Level Testing phases to the Integration Test phase in the V-Cycle of software development. A data driven test approach helps the reuse of tests across vehicle platforms.
Video

Maturity Level and Variant Validation of Mechatronic Systems in Commercial Vehicles

2011-12-05
Driver assistance systems (e.g. the emergency brake assist Active Brake Assist2, or ABA2 for short, in the Mercedes-Benz Actros) are becoming increasingly common in heavy-duty commercial vehicles. Due to the close interconnection with drivetrain and suspension control systems, the integration and validation of the functions make the most exacting demands on processes and tools involved in mechatronics development. Presenter Thomas Bardelang, Daimler AG
Video

Smart and Connected Electrification at Ford

2012-03-27
The automotive industry continues to develop new powertrain technologies aimed at reducing overall vehicle level fuel consumption. This paper discusses the development of a new highly efficient parallel hybrid transmission for use in transversely installed powertrains for FWD applications. FEV is developing a new 7-speed hybrid transmission for transverse installation. The transmission with a design torque of 320 Nm is based on AMT (automated manual transmission) technology and uses a single electric motor. The innovative gearset layout combines the advantages of modern AMTs such as best efficiency, low costs and few components (reduced part count) with full hybrid capabilities and electric torque support during all gear shifts. Furthermore, the gear set layout allows for very short shift-times due to the favorable distribution of inertias. Other features include an A/C compressor being electrically driven by the electric motor of the transmission during engine start/stop phases.
Video

Review of Updated Aerospace Recommended Practices ARP5061A, "Guidelines for Testing and Support of Aerospace, Fiber Optic, Inter-Connect Systems"

2012-03-12
In this presentation we will present a COTS solution for an ARINC 653 IMA based system. It will cover IMA concepts from an OS point of view and show how a platform can be built for application development. It will also cover DO-297, and how that can isolate applications for certification and test purposes and allow for easy configuration of multiple applications between different development teams. Presenter Alex Wilson, Wind River
Video

Understanding the Green - and the Not So Green - Consumer

2012-03-27
Automakers, suppliers, public agencies, interest groups and others are increasingly embracing the environment as one of the dominant forces in the US automotive market. All parties have a strong vested interest in understanding how environmental concerns will influence design, production, marketing and usage of tomorrow�s vehicles. A common need of all parties is independent and actionable information to enable them to make better decisions and have the greatest chance of being successful in this uncertain future. Four factors - an uncertain economic climate; a constantly changing governmental regulatory system; advancements in powertrain technology; and ever-present environmental concerns - continue to shape the automotive landscape. While automakers are focused on developing alternative powertrains and alternative fuel options for an increasingly �green� vehicle market, J.D.
Journal Article

U.S. Light-Duty Vehicle Air Conditioning Fuel Use and Impact of Solar/Thermal Control Technologies

2018-12-11
Abstract To reduce fuel consumption and carbon dioxide (CO2) emissions from mobile air conditioning (A/C) systems, “U.S. Light-Duty Vehicle Greenhouse Gas Emissions and Corporate Average Fuel Economy Standards” identified solar/thermal technologies such as solar control glazings, solar reflective paint, and active and passive cabin ventilation in an off-cycle credit menu. National Renewable Energy Laboratory (NREL) researchers developed a sophisticated analysis process to calculate U.S. light-duty A/C fuel use that was used to assess the impact of these technologies, leveraging thermal and vehicle simulation analysis tools developed under previous U.S. Department of Energy projects. Representative U.S. light-duty driving behaviors and weighting factors including time-of-day of travel, trip duration, and time between trips were characterized and integrated into the analysis.
Journal Article

Thermal Energy Performance Evaluation and Architecture Selection for Off-Highway Equipment

2021-08-31
Abstract An accurate and rapid thermal model of an axle-brake system is crucial to the design process of reliable braking systems. Proper thermal management is necessary to avoid damaging effects, such as brake fade, thermal cracking, and lubricating oil degradation. In order to understand the thermal effects inside of a lubricated braking system, it is common to use Computational Fluid Dynamics (CFD) to calculate the heat generation and rejection. However, this is a difficult and time-consuming process, especially when trying to optimize a braking system. This article uses the results from several CFD runs to train a Stacked Ensemble Model (SEM), which allows the use of machine learning (ML) to predict the systems’ temperature based on several input design parameters. The robustness of the SEM was evaluated using uncertainty quantification.
Journal Article

Application of a Flow Field Based Heat Transfer Model to Hydrogen Internal Combustion Engines

2009-04-20
2009-01-1423
A realistic modeling of the wall heat transfer is essential for an accurate analysis and simulation of the working cycle of internal combustion engines. Empirical heat transfer formulations still dominate the application in engine process simulations because of their simplicity. However, experiments have shown that existing correlations do not provide satisfactory results for all the possible operation modes of hydrogen internal combustion engines. This paper describes the application of a flow field-based heat transfer model according to Schubert et al. [1]. The models strength is a more realistic description of the required characteristic velocity; considering the influence of the injection on the global turbulence and on the in-cylinder flow field results in a better prediction of the wall heat transfer during the compression stroke and for operations with multiple injections. Further an empirical hypothesis on the turbulence generation during combustion is presented.
Journal Article

1D Thermo-Fluid Dynamic Modeling of Reacting Flows inside Three-Way Catalytic Converters

2009-04-20
2009-01-1510
In this work a detailed model to simulate the transient behavior of catalytic converters is presented. The model is able to predict the unsteady and reacting flows in the exhaust ducts, by solving the system of conservation equations of mass, momentum, energy and transport of reacting chemical species. The en-gine and the intake system have not been included in the simulation, imposing the measured values of mass flow, gas temperature and chemical composition as a boundary condition at the inlet of the exhaust system. A detailed analysis of the diffusion stage triggering is proposed along with simplifications of the physics, finalized to the reduction of the calculation time. Submodels for water condensation and its following evaporation on the monolith surface have been taken into account as well as oxygen storage promoted by ceria oxides.
Journal Article

Thermodynamic Analysis of SI Engine Operation on Variable Composition Biogas-Hydrogen Blends Using a Quasi-Dimensional, Multi-Zone Combustion Model

2009-04-20
2009-01-0931
In this work, a quasi-dimensional, multi-zone combustion model is analytically presented, for the prediction of performance and nitric oxide (NO) emissions of a homogeneous charge spark ignition (SI) engine, fueled with biogas-H2 blends of variable composition. The combustion model is incorporated into a closed cycle simulation code, which is also fully described. Combustion is modeled on the basis of turbulent entrainment theory and flame stretch concepts. In this context, the entrainment speed, by which unburned gas enters the flame region, is simulated by the turbulent burning velocity of a flamelet model. A flame stretch submodel is also included, in order to assess the flame response on the combined effects of curvature, turbulent strain and nonunity Lewis number mixture. As far as the burned gas is concerned, this is treated using a multi-zone thermodynamic formulation, to account for the spatial distribution of temperature and NO concentration inside the burned volume.
Standard

Cloth, Carbon Fiber, Resin Impregnated

2005-06-08
HISTORICAL
AMS3897
This specification and its supplementary detail specifications cover continuous multifilament carbon tow woven into fabric and impregnated with uncured resin.
Standard

Cloth, Carbon Fiber, Resin Impregnated

2016-10-12
CURRENT
AMS3897A
This specification and its supplementary detail specifications cover continuous multifilament carbon tow woven into fabric and impregnated with uncured resin.
Standard

Paper Honeycomb 60 lb (25 kg) Paper

2016-11-10
CURRENT
AMS3720C
This specification covers paper base honeycomb material having a cell size of 0.330 or 0.440 in. (8.38 or 11.18 mm). Unless otherwise ordered, size 0.440 in. (11.18 mm) be supplied.
X