Refine Your Search

Topic

Search Results

Standard

Bearing Corrosion Test Method

2006-11-01
HISTORICAL
ARP4249
This SAE Aerospace Recommended Practice (ARP) is intended to evaluate corrosion inhibiting properties of synthetic gas turbine lubricants and gearbox oils.
Standard

Bearing Corrosion Test Method

2015-08-28
CURRENT
ARP4249A
This SAE Aerospace Recommended Practice (ARP) is intended to evaluate corrosion inhibiting properties of synthetic gas turbine lubricants and gearbox oils.
Standard

Aviation Lubricant Tribology Evaluator (ALTE) Method to Determine the Lubricating Capability of Gas Turbine Lubricants

2013-03-15
CURRENT
ARP6255
Employing ‘ball-on-cylinder’ philosophy, a non-rotating steel ball is held in a vertically mounted chuck and using an applied load is forced against an axially mounted steel cylinder. The test cylinder is rotated at a fixed speed while being partially immersed in a lubricant reservoir. This maintains the cylinder in a wet condition and continuously transports a lubricating film of test fluid to the ball and cylinder interface. The diameter of the wear scar generated on the test ball is used as a measure of the fluid’s lubricating properties. The apparatus can be used, by adjusting the operating conditions, to reproduce two different wear mechanisms; mild and severe wear, the ALTE therefore has the ability to assess a lubricant’s performance in that regard. These mechanisms are described below.
Standard

Evaluation of Coking Propensity of Aviation Lubricants in an Air-Oil Mist Environment using the Vapor Phase Coker

2014-04-03
CURRENT
ARP5921
This method is designed to evaluate the coking propensity of synthetic ester-based aviation lubricants under two phase air-oil mist conditions as found in certain parts of a gas turbine engine, for instance, bearing chamber vent lines. Based on the results from round robin data in 2008–2009 from four laboratories, this method is currently intended to provide a comparison between lubricants as a research tool; it is not currently a satisfactory pass/fail test. At this juncture a reference oil may improve reproducibility (precision between laboratories); a formal precision statement will be given when there is satisfactory data and an agreed on, suitable reference oil if applicable.
Standard

Compatibility of Turbine Lubricating Oils

2023-05-01
CURRENT
ARP7120
This method is used for determining the compatibility of a candidate lubricant with specific reference lubricants. The reference lubricants to be used will typically be mandated by the owner of the product specification against which the candidate lubricant is being compared. This method is split into two procedures (Procedure A and Procedure B) with a summary of each procedure contained in Section 4.
Standard

Micropitting of Bearings and Gears in Aviation

2022-12-07
CURRENT
AIR6989
The intent of this SAE Aerospace Information Report (AIR) is to summarize and review the E34 committee’s efforts to educate the aerospace propulsion lubrication community on the science of micropitting, its consequences, and the various tribology evaluation methods that can be employed under aviation related conditions to differentiate formulation related aggravating factors.
Standard

Evaluation of Coking Propensity of Aviation Lubricants in an Air-Oil Mist Environment using the Vapor Phase Coker

2019-07-08
WIP
ARP5921A
This method is designed to evaluate the coking propensity of synthetic ester-based aviation lubricants under two phase air-oil mist conditions as found in certain parts of a gas turbine engine, for instance, bearing chamber vent lines. Based on the results from round robin data in 2008-2009 from four laboratories, this method is currently intended to provide a comparison between lubricants as a research tool; it is not currently a satisfactory pass/fail test. At this juncture a reference oil may improve reproducibility (precision between laboratories); a formal precision statement will be given when there is satisfactory data and an agreed on, suitable reference oil if applicable.
Standard

Aviation Lubricant Tribology Evaluator (ALTE) Method to Determine the Lubricating Quality of Gas Turbine Lubricants

2019-06-12
WIP
ARP6255A
Employing ‘ball-on-cylinder’ philosophy, a non-rotating steel ball is held in a vertically mounted chuck and using an applied load is forced against an axially mounted steel cylinder. The test cylinder is rotated at a fixed speed while being partially immersed in a lubricant reservoir. This maintains the cylinder in a wet condition and continuously transports a lubricating film of test fluid to the ball and cylinder interface. The diameter of the wear scar generated on the test ball is used as a measure of the fluid’s lubricating properties. The apparatus can be used, by adjusting the operating conditions, to reproduce two different wear mechanisms; mild and severe wear, the ALTE therefore has the ability to assess a lubricant’s performance in that regard.
Standard

Minisimulator Method

2022-02-11
WIP
ARP6166A
This test method is designed to simulate the synergistic combinations of oil flow, temperature cycling, hot spots, and tribology that would typically be found in a gas turbine engine. The method is intended to quantitatively characterize changes in four basic oil properties that are brought about by exposure to the afore mentioned simulated turbine engine environment: the tendency of aviation lubricants to form coke deposits, viscosity changes, total acid number changes (TAN), and oil consumption.
X