Refine Your Search

Topic

Author

Search Results

Technical Paper

Thoracic Response to Shoulder Belt Loading: Investigation of Chest Stiffness and Longitudinal Strain Pattern of Ribs

2009-04-20
2009-01-0384
Two post-mortem human subjects were subjected to dynamic, non-injurious (up to 20% chest deflection) anterior shoulder belt loading at 0.5 m/s and 0.9 m/s loading rates. The human surrogates were mounted to a stationary apparatus that supported the spine and shoulder in a configuration comparable to that achieved in a 48 km/h sled test at the time of maximum chest deformation. A hydraulically driven shoulder belt was used to load the anterior thorax which was instrumented with a load cell for measuring reaction force and uniaxial strain gages at the 4th and 8th ribs. In addition, the deformation of the chest was measured using a 16- camera Vicon 3D motion capture system. In order to investigate the chest deformation pattern and ribcage loading in greater detail, a human finite element (FE) model of the thorax was used to simulate the tests.
Technical Paper

Simulation of Occipitoatlantoaxial Injury Utilizing a MADYMO Model

2004-03-08
2004-01-0326
Injuries of the Occipitoatlantoaxial (Occ-C2) region (also known as atlanto-occipital injuries) are the most common form of cervical injury in children aged ten years and younger. The crash studied in this paper is unique in that there were three children ages 3, 6 and 7 involved in a frontal crash with a delta V of 28mph with each child receiving a nonfatal Occ-C2 injury of varying degrees. The 3 and 6 year-old children were remarkably similar in height and weight to the 3 and 6 year-old Hybrid III ATD's. Also, unique to this case is the fact that the right rear 6 year-old occupant likely sustained an Occ-C2 injury prior to impact with the frame of the front passenger seat. This crash environment was recreated utilizing MADYMO occupant simulation software. The models for the Hybrid III 3 and 6 year-old ATDs were used to represent the occupants in this crash.
Technical Paper

Development and Validation of a Finite Element Model of a Vehicle Occupant

2004-03-08
2004-01-0325
A finite element human model has been developed to simulate occupant behavior and to estimate injuries in real-world car crashes. The model represents an average adult male of the US population in a driving posture. Physical geometry, mechanical characteristics and joint structures were replicated as precise as possible. The total number of nodes and materials is around 67,000 and 1,000 respectively. Each part of the model was not only validated against human test data in the literature but also for realistic loading conditions. Additional tests were newly conducted to reproduce realistic loading to human subjects. A data set obtained in human volunteer tests was used for validating the neck part. The head-neck kinematics and responses in low-speed rear impacts were compared between the measured and calculated results. The validity of the lower extremity part was examined by comparing the tibia force in a foot impact between the test data and simulation results.
Technical Paper

Sled System Requirements for the Analysis of Side Impact Thoracic Injury Criteria and Occupant Protection

2001-03-05
2001-01-0721
This paper discusses struck-side occupant thoracic response to side-impact loading and the requirements of a sled system capable of reproducing the relevant motions of a laterally impacted vehicle. A simplified viscoelastic representation of a thorax is used to evaluate the effect of the door velocity-time profile on injury criteria and on the internal stress state of the thorax. Simulations using a prescribed door velocity-time profile (punch impact) are contrasted against simulations using a constant-velocity impact (Heidelberg-type impact). It is found that the stress distribution and magnitude within the thorax, in addition to the maximum thorax compression and viscous response, depend not only on the door-occupant closing velocity, but also on the shape of the door velocity-time profile throughout the time of contact with the occupant. A sled system capable of properly reproducing side-impact door and seat motion is described.
Technical Paper

ROLLOVER: A METHODOLOGY FOR RESTRAINT SYSTEM DEVELOPMENT

2001-06-04
2001-06-0217
Concern about crash conditions other than frontal and side crashes has accelerated restraint development with respect to rollover events. Previous analysis of rollover field data indicates the high probability of ejection and consequent serious injury or death to unbelted occupants. Partial ejection of belted occupants may also occur. Restraint development has focused on belt technologies and more recently, airbag systems as a method to reduce ejection and injury risk. Effective restraint development for these emerging technologies should consider a combined approach of field injury data analysis, computer simulation of rollover, corresponding validated test data and hardware development techniques. First, crash data was analyzed for identified rollover modes (crash sequences) and injured body regions. This helped to determine possible restraint interventions.
Technical Paper

Response and vulnerability of the ankle joint in simulated footwell intrusion experiments~A study with cadavers and dummies

2001-06-04
2001-06-0212
The prevention of lower extremity injuries to front seat car occupants is a priority because of their potential to cause long-term impairment and disability. To determine the types and mechanisms of lower extremity injuries in frontal collisions, studies under controlled test conditions are needed. Sled tests using belt-restrained cadavers and dummies were conducted, in which footwell intrusion was simulated via a plane surface or simulated brake pedal. Human cadavers in the age range from 30 to 62 years and Hybrid III dummies were used. The footwell intrusion had both translational (135 mm) and rotational (30 degrees) components. Maximum footwell intrusion forces and accelerations were measured. The lower legs were instrumented with accelerometers and a ""six axis'' force-moment transducer was mounted in the mid shaft of the left tibia.
Technical Paper

The Biofidelity of EUROSID 1 and BIOSID

1992-11-01
922518
A current priority in Europe and the USA is the development of improved side collision dummies. This report presents the results of sled tests with three test subject types: cadavers (PMHS), EUROSID 1 and BIOSID. Twenty one (21) cadaver tests were performed and 9 dummy tests a piece. The left side of the test subjects were impacted under one of two different test conditions: 24 km/h rigid wall and 32 km/h padded wall. The cadavers were instrumented with a 12 thoracic, and triaxial pelvic accelerometer arrays. Thoracic deformation was calculated from rib accelerations. The dummies were instrumented in their standard formats, which included the ability to measure coronal plane thoracic deformation. For all test subject types and measurement locations the 3ms. acceleration standard deviations were low. Mean 3ms. accelerations showed no consistent relationship in magnitude between subject types. The measured dummy rib deformations were compared to the calculated cadaver deformations.
Technical Paper

Comparison of Belted Hybrid III, THOR, and Cadaver Thoracic Responses in Oblique Frontal and Full Frontal Sled Tests

2003-03-03
2003-01-0160
This paper compares restrained Hybrid III and THOR thoracic kinematics and cadaver injury outcome in 30° oblique frontal and in full frontal sled tests. Peak shoulder belt tension, the primary source of chest loading, changed by less than four percent and peak chest resultant acceleration changed by less than 10% over the 30° range tested. Thoracic kinematics were likewise insensitive to the direction of the collision vector, though they were markedly different between the two dummies. Mid-sternal Hybrid III chest deflection, measured by the standard sternal potentiometer and by supplemental internal string potentiometers, was slightly lower (∼10%) in the oblique tests, but the oblique tests produced a negligible increase in lateral movement of the sternum. In an attempt to understand the biofidelity of these dummy responses, a series of 30-km/h human cadaver tests having several collision vectors (0°, 15°, 30°, 45°) was analyzed.
Technical Paper

An Evaluation of Pedal Cycle Helmet Performance Requirements

1995-11-01
952713
The paper describes an evaluation of impact performance requirements for pedal cycle helmets. The paper examines the results of two related studies, evaluates other helmet test results and proposes performance criteria more effective for the amelioration of head injury. The two main studies are of pedal cycle helmet performance in real accidents (McIntosh and Dowdell IRCOBI 1992) and head impact tests conducted under conditions relevant to those occurring during pedal cycle accidents (McIntosh et al Stapp 1993). The results of other helmet evaluations are drawn upon. The paper examines a number of areas of helmet performance and focuses on head coverage and impact test criteria. The results of the studies demonstrate that pedal cycle helmets are failing to provide adequate coverage in the temporal region, and that standards tests are not sensitive to this problem.
Technical Paper

Comparison of Sled Tests with Real Traffic Accidents

1995-11-01
952707
There exist two different methods to investigate the injury mechanisms and the tolerance levels, either sled tests or real road traffic accidents. Sled tests conducted at the University of Heidelberg and real accident cases examined by the University of Hannover were compared. The impact conditions of the Heidelberg sled tests were frontal collisions, with an impact velocity (Δv) of 50 km/h and decelerations of 10 g's to 20 g's. Twenty-nine tests with 3-point-belt protected cadavers in the age range 19 to 65 years were included in the Heidelberg collective. The Hannover sample contained 24 frontal accident cases (30 occupants) with a 100% overlap of the car front with the same Δv and average car deceleration range similar as the sled tests, the passenger compartment was only minimal intruded. Three-point belt protected drivers and front passengers in the age range of 18 to 71 years were included in the sample.
Technical Paper

On the Synergism of the Driver Air Bag and the 3-Point Belt in Frontal Collisions

1995-11-01
952700
The number of passenger vehicles with combined 3-point belt/driver air bag restraint systems is steadily increasing. To investigate the effectiveness of this restraint combination, 48 kph frontal collisions were performed with human cadavers. Each cadaver's thorax was instrumented with a 12-accelerometer array and two chest bands. The results show, that by using a combined standard 3-point belt (6% elongation)/driver air bag, the thoracic injury pattern remained located under the shoulder belt. The same observation was found when belts with 16% elongation were used in combination with the driver air bag. Chest contours derived from the chest bands showed high local compression and deformation of the chest along the shoulder belt path, and suggest the mechanism for the thoracic injuries.
Technical Paper

Application of a Finite Element-Based Human Arm Model for Airbag Interaction Analysis

2004-06-15
2004-01-2147
Interaction of the human arm and deploying airbag has been studied in the laboratory using post mortem human subjects (PMHS). These studies have shown how arm position on the steering wheel and proximity to the airbag prior to deployment can influence the risk of forearm bone fractures. Most of these studies used older driver airbag modules that have been supplanted by advanced airbag technology. In addition, new numerical human body models have been developed to complement, and possibly replace, the human testing needed to evaluate new airbag technology. The objective of this study is to use a finite element-based numerical (MADYMO) model, representing the human arm, to evaluate the effects of advanced driver airbag parameters on the injury potential to the bones of the forearm. The paper shows how the model is correlated to Average Distal Forearm Speed (ADFS) and arm kinematics from two PMHS tests.
Technical Paper

A Method for the Experimental Investigation of Acceleration as a Mechanism of Aortic Injury

2005-04-11
2005-01-0295
Rupture of the thoracic aorta is a leading cause of rapid fatality in automobile crashes, but the mechanism of this injury remains unknown. One commonly postulated mechanism is a differential motion of the aortic arch relative to the heart and its neighboring vessels caused by high-magnitude acceleration of the thorax. Recent Indy car crash data show, however, that humans can withstand accelerations exceeding 100 g with no injury to the thoracic vasculature. This paper presents a method to investigate the efficacy of acceleration as an aortic injury mechanism using high-acceleration, low chest deflection sled tests. The repeatability and predictability of the test method was evaluated using two Hybrid III tests and two tests with cadaver subjects. The cadaver tests resulted in sustained mid-spine accelerations of up to 80 g for 20 ms with peak mid-spine accelerations of up to 175 g, and maximum chest deflections lower than 11% of the total chest depth.
Technical Paper

Comparison Between Frontal Impact Tests with Cadavers and Dummies in a Simulated True Car Restrained Environment

1982-02-01
821170
A test series of 12 fresh cadavers and 5 Part 572 dummies is reported. The test configuration is frontal impact sled simulation at 30 mph and aims to simulate the restraint environment of a Volvo 240 car. The test occupants are restrained in a 3-point safety belt. The instrumentation of the surrogates involves mainly 12-accelerometers in chest, 9-accelerometers in head and 3-accelerometers in pelvis. Measured values are given and discussed together with the medical findings from the cadaver tests. The occurence of submarining with cadavers and dummies is reported. A comparison is also made with earlier work where both field accidents and sled simulatations of similar violence have been reported. It is concluded that there exist differences in kinematics between the dummy and the cadaver, although peak chest acceleration is similar in both conditions. The lap belt slides over the iliac crest more frequently in the cadaver tests than in the dummy tests.
Technical Paper

Exploration of Biomechanical Data Towards a Better Evaluation of Tolerance for Children Involved in Automotive Accidents

1984-02-01
840530
Children are often involved in automotive accidents especially as car occupants. Their protection presents particular problems in the first years of life, due to large changes in their morphology and behaviour. The aim of this paper is to contribute towards the development of a better evaluation of the child's tolerance to impact. Car accident investigations are analysed to bring information on injury mechanisms and severities. Free fall accidents are other sources of data used to correlate injuries with impact conditions. Theoretical analysis is considered for extrapolation of experimental data obtained from adult humans and animal surrogates. Then crash simulations with child cadavers and primates restrained in child seats are analysed and the estimation of tolerance levels for children is discussed.
Technical Paper

Analysis of EUROSID Biofidelity

1989-02-01
890381
Results from 15 side impact tests with EUROSID are reported and compared with results from 58 postmortem human subjects (PMHS). In this test series a CCMC moving deformable barrier impacted an Opel Kadett body in white under a 90° impact angle. Impact speeds were 40 km/h, 45 km/h, 50 km/h. The main goal of this research project was to find out to what extent the EUROSID is able to predict injuries which were obtained under identical test conditions using PMHS. Statistical methods described in former publications were used to calculate prediction relations derived from measured data. The body regions to be concentrated on according to PMHS tests were thorax, abdomen, and trunk of the EUROSID. Measurements taken on the dummy indicated major problems regarding interpretation of results: in some tests rib deflection was higher with 40 km/h than with 50 km/h. The abdominal switches frequently indicated high forces at 40 km/h impact speed whereas they did only once at 50 km/h.
Technical Paper

Neck Response and Injury Assessment Using Cadavers and the US-SID for Far-Side Lateral Impacts of Rear Seat Occupants with Inboard-Anchored Shoulder Belts

1990-10-01
902313
This paper documents seven car/car lateral collisions with belted farside rear seat occupants. The test subjects - cadavers and US SIDs - were restrained with a 3-point belt which had an inboard upper anchoring point for the shoulder belt. The collision velocity was 50 km/h. In the cadaver tests, the maximum resultant acceleration, an average of 18 G, was located at the clivus. In the US SID a maximum of 22 G occurred at the C.G. Average shoulder belt forces in the cadavers of 1,6 KN were measured compared to 2,5 KN in the US SID. Through an analysis of the high speed films, lateral head-neck bending angles of 40 to 65 degrees for the cadavers were investigated. The calculated angular velocities were between 13 and 38 rad/s and angular accelerations between 350 and 644 rad/s2. No head, thorax or pelvic injuries were observed. Belt-induced minor injuries at the skin on the neck, neck muscles and cervical spine were observed with a MAIS 1.
Technical Paper

Advancements in Crash Sensing

2000-11-01
2000-01-C036
The crash modes that occur each day on streets and highways have not changed dramatically over the past 50 years. The need to better understand those crash modes and their relation to rapidly emerging, tailorable restraint systems has intensified recently. The algorithms necessary for predicting a deployment event are based on an approach of coupling the occupant kinematics in a crash to the sensing technology that will activate the restraint system. This paper describes methods of computer modeling, occupant sensing and vehicle crash dynamics to define a crash sensing system that reacts to a complex set of input conditions to invoke an effective restraint response.
Technical Paper

Thoracic Response to Dynamic, Non-Impact Loading from a Hub, Distributed Belt, Diagonal Belt, and Double Diagonal Belts

2004-11-01
2004-22-0022
This paper presents thoracic response corridors developed using fifteen post-mortem human subjects (PMHS) subjected to single and double diagonal belt, distributed, and hub loading on the anterior thorax. We believe this is the first study to quantify the force-deflection response of the same thorax to different loading conditions using dynamic, non-impact, restraint-like loading. Subjects were positioned supine on a table and a hydraulic master-slave cylinder arrangement was used with a high-speed materials testing machine to provide controlled chest deflection at a rate similar to that experienced by restrained PMHS in a 48-km/h sled test. All loading conditions were tested at a nominally non-injurious level initially. When the battery of non-injurious tests was completed, a single loading condition was used for a final, injurious test (nominal 40% chest deflection).
Technical Paper

Impact Response of Restrained PMHS in Frontal Sled Tests: Skeletal Deformation Patterns Under Seat Belt Loading

2009-11-02
2009-22-0001
This study evaluated the response of restrained post-mortem human subjects (PMHS) in 40 km/h frontal sled tests. Eight male PMHS were restrained on a rigid planar seat by a custom 3-point shoulder and lap belt. A video motion tracking system measured three-dimensional trajectories of multiple skeletal sites on the torso allowing quantification of ribcage deformation. Anterior and superior displacement of the lower ribcage may have contributed to sternal fractures occurring early in the event, at displacement levels below those typically considered injurious, suggesting that fracture risk is not fully described by traditional definitions of chest deformation. The methodology presented here produced novel kinematic data that will be useful in developing biofidelic human models.
X