Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

The Interaction of MMT® Combustion Products with the Exhaust Catalyst Face

2007-04-16
2007-01-1078
Since the introduction of the catalytic converter, some automobile manufacturers have questioned whether the converter is compatible with the use of the gasoline fuel additive MMT®. Concerns have generally revolved around possible interactions between combustion products of MMT® (i.e., manganese containing compounds) and catalytic converters. In particular, concern has been raised over the possibility that MMT® combustion products physically “plug” the catalyst and cause catalyst failure, where plugging refers to blockage of contiguous pores at the catalyst inlet face or within the body of the converter. In modern vehicles this could result in the illumination of the malfunction indicator light (MIL) due to storing of an on-board diagnostic (OBD) failure code pertaining to catalyst operation or failure of a vehicle inspection and maintenance (I/M) test.
Technical Paper

Use of Fuel Additives to Maintain Modern Diesel Engine Performance with Severe Test Conditions

2008-06-23
2008-01-1806
The rapid advancement of diesel engine technology as used in European passenger cars brings greater demands for the provision of high-quality diesel fuel and premium performance fuels. Fuel additives play an increasingly important role in enhancing fuel quality and meeting the demands of these new engine technologies. The development of these additives and appropriate fuels relies on engine test procedures that can accurately simulate the performance of the fuel in consumer vehicles. The value of such tests is greatest when the test cycle, operating parameters and test fuel have relevant correlation to those experienced by a vehicle in actual consumer use. This paper considers the DW10 injector fouling test currently under development within the CEC and highlights the methods used to increase the severity. Conventional fuel additives currently used in premium fuels offer superb protection against the deposit formation seen in this test.
Technical Paper

The Role that Methylcyclopentadienyl Manganese Tricarbonyl (MMT®) Can Play in Improving Low-Temperature Performance of Diesel Particulate Filters

2002-10-21
2002-01-2728
Control and elimination of mobil-source particulate matter (PM) emissions is of increasing interest to engineers and scientists as regulators in industrialized countries promulgate lower emission levels in diesel engines. Relative to their gasoline engine counterparts, today's diesel engines, in general, still emit a higher mass of PM. While strictly speaking, this PM is an agglomeration of organic and inorganic particles, the predominant component is carbon and is commonly referred to as “soot”. For mobil-source PM control, one of the current preferred technologies is the ceramic closed-cell monolith Diesel Particulate Filter (DPF). Ideally, DPFs accumulate and store PM during low speed/temperature engine operation and burn the accumulated PM during high speed/temperature operation.
Technical Paper

The Physical and Chemical Effect of Manganese Oxides on Automobile Catalytic Converters

1994-03-01
940747
Manganese oxide deposits which are exclusively in the form of Mn3O4, a benign form of manganese, are introduced in the exhaust stream from use of MMT, an octane-enhancing, emission-reducing fuel additive. The physical and chemical effect of these deposits on catalytic converters has generated some controversy in the literature. In this paper, we will focus on the effects that manganese oxide deposits have on catalytic converters. The physical effect of these deposits on the morphology of the converters was investigated by B.E.T surface area measurements, scanning electron microscopy (SEM), and x-ray fluorescence (XRF). The chemical effect was investigated with tests using both slave-engine dynamometers and a pulse-flame combustor to probe for differences in catalyst performance. Data from an extensive vehicle fleet which was tested according to a program designed in consultation with the EPA and the automobile industry will be presented.
Technical Paper

THE EFFECT OF MANGANESE OXIDES ON OBD-II CATALYTIC CONVERTER MONITORING

1994-10-01
942056
Extensive vehicle fleet testing has demonstrated that use of MMT can reduce net tailpipe out emissions. The use of fuel containing the octane-enhancing, emission-reducing fuel additive leads to manganese oxide deposits in the vehicle exhaust system. Studies of the physical and chemical effects of manganese oxide deposits on the performance of catalytic converters conclusively demonstrated that MMT does not adversely affect catalytic converters and, in fact, protected the converters from phosphorus and zinc. Despite the overwhelming evidence that MMT is compatible with catalytic converters and vehicle emission control systems, concerns have recently been raised about the effect of manganese oxides on OBD-II catalytic converter monitoring.
Technical Paper

A Systems Approach to Improved Exhaust Catalyst Durability: The Role of the MMT Fuel Additive

2000-06-19
2000-01-1880
The long-term durability of a vehicle's exhaust catalyst is essential for emission control. Catalyst durability can be affected by a variety of factors including engine oil consumption. During normal engine operation, some of the lubricating oil is combusted. The deposition of combustion products from phosphorus containing lubricant additives on the catalyst can adversely affect catalyst durability. In an attempt to minimize the impact of oil consumption on additive performance, engines have been designed to reduce oil consumption and oils are being formulated with lower concentrations of phosphorus compounds. However, these phosphorus compounds protect the engine from excessive wear and cannot be easily removed from lubricant oil due to concerns over engine durability. The use of a phosphorus scavenger is an approach that works together with engine design to minimize catalyst deterioration.
X