Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Estimation of Occupant Position from Probability Manifolds of Air Bag Fire-times

1998-02-23
980643
This paper outlines a method for estimating the probablistic nature of airbag crash sensor response and its effect on occupant position. Probability surfaces of airbag fire times are constructed for the impact velocities from 0 to 40 mph. These probability surfaces are obtained by using both frontal offset deformable barrier and frontal rigid barrier crash data. Another probability surface of displacement is constructed to estimate the occupant displacement time history before airbag deployment. This probability surface is constructed by using the initial occupant seating position data and the vehicle impact velocity and deceleration data. In addition, the probability of airbag firing at a given crash velocity is estimated from NASS-CDS, frontal offset and rigid barrier crash data.
Technical Paper

Air Bag Loading on In-Position Hybrid III Dummy Neck

2001-03-05
2001-01-0179
The Hybrid III family of dummies is used to estimate the response of an occupant during a crash. One recent area of interest is the response of the neck during air bag loading. The biomechanical response of the Hybrid III dummy's neck was based on inertial loading during crash events, when the dummy is restrained by a seat belt and/or seat back. Contact loading resulting from an air bag was not considered when the Hybrid III dummy was designed. This paper considers the effect of air bag loading on the 5th percentile female Hybrid III dummies. The response of the neck is presented in comparison to currently accepted biomechanical corridors. The Hybrid III dummy neck was designed with primary emphasis on appropriate flexion and extension responses using the corridors proposed by Mertz and Patrick. They formulated the mechanical performance requirements of the neck as the relationship between the moment at the occipital condyles and the rotation of the head relative to the torso.
Technical Paper

Extraction of Information From Noisy 3-Year-Old Atd Response Signals in Static Out-Of-Position Airbag Tests

2001-06-04
2001-06-0101
This paper presents an approach to analyze experimental data contaminated with noise from Anthropomorphic Test Devices (ATDs). This approach is based on information extraction procedures and they are illustrated through an analysis of Hybrid III 3-year-old and Q3 ATDs test data. The methodology used for extracting information and ATD test data analysis includes optimized filtering, spectral coherence, auto- and cross-correlation analysis, and Kalman filtering. This work investigates promising techniques of extracting information from noisy ATD signals that are not commonly used in the automotive industry.
Technical Paper

HYBRID III DUMMY NECK RESPONSE TO AIR BAG LOADING

2001-06-04
2001-06-0130
This paper discusses issues related to the Hybrid III dummy head/neck response due to deploying air bags. The primary issue is the occurrence of large moment at the occypital condyles of the dummy, when the head-rotation with respect to the torso is relatively small. The improbability of such an occurrence in humans is discussed in detail based on the available biomechanical data. A secondary issue is the different anthropometric characteristics of the head/neck region of the Hybrid III dummy when compared to humans. Different modes of interaction between the deploying air bag and the Hybrid III dummy’s neck are discussed. Key features of the dummy’s response in these interaction modes have been described in light of the laxity of the atlanto-occypital joint and the effect of the neck muscle pairs. Issues for improving the biofidelity of the Hybrid III dummy’s neck response due to deploying air bags are discussed.
Technical Paper

An Impact Pulse-Restraint Energy Relationship and Its Applications

2003-03-03
2003-01-0505
This paper presents an energy relationship between vehicle impact pulses and restraint systems and applies the relationship to formulations of response factors for linear and nonlinear restraints. It also applies the relationship to derive optimal impact pulses that minimize occupant response for linear and nonlinear restraints. The relationship offers a new viewpoint to impact pulse optimization and simplifies the process mathematically. In addition, the effects of different vehicle impact pulses on the occupant responses with nonlinear restraints are studied. Finally, concepts of equivalent pulses and equal intensity pulses are presented for nonlinear restraints.
Technical Paper

A Novel “Blister-Inflation” Technique for Evaluating the Thermal Aging of Airbag Fabrics During Deployment

1995-02-01
950341
Due to commercial television almost everyone is familiar ‘automotive inflatable restraint system,’ commonly referred to as airbag. Traditionally these bags were made of polyamide fabrics coated with polychloroprene, which made them essentially impermeable. Even though this restraint technology has been in use for more than fifteen years, there remain some features that still need to be improved; i.e., the high cost, the high package volume, the weight and the need for replacement of coated fabrics. In this paper special attention is given to uncoated fabrics. A novel blister-inflation technique was utilized to evaluate the permeability of test fabrics under biaxial stretching conditions. Further, the effect of inflation temperature and internal pressure drop across the fabric on the permeability of the fabrics can be evaluated by this technique.
Technical Paper

Comparison of Contributions to Energy Dissipation Produced with Safety Airbags

1995-02-01
950340
Safety restraint technology relies on woven fabrics as the principle material of construction. On impact, gases are generated instantaneously to inflate the bag. As the pressure within the bag increases during deployment and later from passenger contact, the airbag fabric stretches in a biaxial-manner. Passenger contact with the slowly deflating airbag accelerates the gaseous outflow through the fabric, airbag seams, and through specially constructed vents. A fraction of the impact energy can also be adsorbed by mechanical biaxial stretching of the fabric's fibers. However, the fabric's permeability and/ or vent system appear to be of primary importance to energy dissipation. A unique blister-inflation technique was developed and used to evaluate the fabric properties necessary for energy dissipation by these four mechanisms. The performance of fabrics woven from two traditional commercial polymeric fibers offered for airbag construction were considered.
Technical Paper

Modeling of Biaxial Deformation of Airbag Fabrics Using Artificial Neural Nets

1995-02-01
950343
Supplemental airbag safety restraint systems are an integral part of today's vehicle package. This inflatable restraint technology relies heavily on woven fabrics and particularly on knowledge pertaining to a fabric's permeability as a function of pressure drop, inflation temperature of the gas and fabric weave. While fabric permeability can be quantified by actual experimental measurements, the number and non-linearity of the variables involved make the experiments time and cost intensive. Moreover, interpolations within a given data set yield questionable results. For these reasons a feed-forward artificial neural network (ANN) technique was utilized to predict fabric permeability. This is an interpretive procedure. An ANN routine must first be trained. During this training the ANN is introduced to actual cause and effect patterns with adjustments being made by changes in weighting factors until the errors in the output variables are minimized.
Technical Paper

Repeatability Evaluation of the Pre-Prototype NHTSA Advanced Dummy Compared to the Hybrid III

2000-03-06
2000-01-0165
A comparison of the NHTSA advanced dummy and the Hybrid III is presented in this paper based on their performance in repeated sled tests under 3 different restraint systems. The restraint systems considered are: the airbag alone, the 3-point belt alone, and a combined use of the airbag and the 3-point belt. Various time-histories pertaining to accelerations, angular velocities, deflections and forces have been compared between the two dummies in order to study their repeatability. The Hybrid III appears to be more repeatable than the NHTSA advanced dummy in its response in one case, that of restraint with the 3-point belt alone. The response of the NHTSA advanced dummy in other two restraint modes, the airbag alone and the combination of 3-point belt and airbag, appears to be no less repeatable than that of Hybrid III in this series of tests.
X