Refine Your Search

Search Results

Viewing 1 to 7 of 7
Journal Article

Headform Impact Tests to Assess Energy Management of Seat Back Contact Points Associated with Head Injury for Pediatric Occupants

2012-04-16
2012-01-0561
Head injuries are the most common injuries sustained by children in motor vehicle crashes regardless of age, restraint and crash direction. Previous research identified the front seat back as relevant contact point associated with head injuries sustained by restrained rear seated child occupants. The objective of this study was to conduct a test series of headform impacts to seat backs to evaluate the energy management characteristics of relevant contact points for pediatric head injury. A total of eight seats were tested: two each of 2007 Ford Focus, Toyota Corolla, 2006 Volvo S40, and 2008 Volkswagen Golf. Five to six contact points were chosen for each unique seat model guided by contact locations determined from real world crashes. Each vehicle seat was rigidly mounted in the center track position with the seatback angle adjusted to 70 degrees above the horizontal.
Technical Paper

Characteristics of Seat Belt Restraint System Markings

2000-03-06
2000-01-1317
Markings or observable anomalies on seat belt webbing and hardware can be classified into two categories: (1) marks caused by collision forces, or “loading marks”; and (2) marks that are created by non-accident situations, or “noncollision marks”. In a previous work, a survey of the driver's seat belt of 307 vehicles that had never experienced a collision was conducted, and several examples of marks created by normal, everyday usage, or “normal usage marks” were presented. It was found that some normal usage marks were visually similar to loading marks. This paper presents several examples comparing loading marks to visually similar normal usage marks and discusses the important similarities and differences.
Technical Paper

Seat Belt Survey: Identification and Assessment of Noncollision Markings

1999-03-01
1999-01-0441
The assessment of seat belt usage during a collision is typically made by considering four types of evidence: (1) the nature and location of the occupant’s injuries, (2) the presence or absence of occupant contact marks in the passenger compartment, (3) the occupant’s final position and (4) markings on the restraint system. This paper focuses specifically on seat belt restraint system markings. Markings or observable anomalies on the webbing and restraint system hardware can be classified into two categories: (1) those caused by collision forces, or “loading marks” and (2) those created by noncollision situations, or “normal usage marks”. Some normal usage marks can appear visually similar to loading marks. The purpose of this paper is to help the investigator distinguish between occupant loading marks and normal usage marks by presenting examples of marks found on belt restraint systems that have never experienced occupant loading in a collision.
Technical Paper

The Influence of Superficial Soft Tissues and Restraint Condition on Thoracic Skeletal Injury Prediction

2001-11-01
2001-22-0008
The purpose of this study is to evaluate the hard tissue injury -predictive value of various thoracic injury criteria when the restraint conditions are varied. Ten right-front passenger human cadaver sled tests are presented, all of which were performed at 48 km/h with nominally identical sled deceleration pulses. Restraint conditions evaluated are 1) force-limiting belt and depowered airbag (4 tests), 2) non-depowered airbag with no torso belt (3 tests), and 3) standard belt and depowered airbag (3 tests). Externally measured chest compression is shown to correspond well with the pre sence of hard tissue injury, regardless of restraint condition, and rib fracture onset is found to occur at approximately 25% chest compression. Peak acceleration and the average spinal acceleration measured at the first and eighth or ninth thoracic vertebrae are shown to be unrelated to the presence of injury, though clear variations in peaks and time histories among restraint conditions can be seen.
Technical Paper

Three-Year-Old Child Out-Of-Position Side Airbag Studies

1999-10-10
99SC03
A series of twenty-nine tests was completed by conducting static deployment of side airbag systems to an out-of-position Hybrid III three-year-old dummy. Mock-ups (bucks) of vehicle occupant compartments were constructed. The dummy was placed in one of four possible positions for both door- and seat-mounted side airbag systems. When data from each type of position test were combined for the various injury parameters it was noted that the head injury criteria (HIC) were maximized for head and neck tests, and the chest injury parameters were maximized for the chest tests. For the neck injury parameters, however, all of the test positions produced high values for at least one of the parameters. The study concluded the following. Static out-of- position child dummy side airbag testing is one possible method to evaluate the potential for injury for worst-case scenarios. The outcome of these tests are sensitive to preposition and various measurements should be made to reproduce the tests.
Technical Paper

Injury Causation Scenarios in Belt-Restrained Nearside Child Occupants

2007-10-29
2007-22-0013
Successful development of side impact safety systems for rear row child occupants requires an understanding of injury causation and mitigation. However, data to guide the design of such safety systems for seat belt-restrained occupants is limited to injury risk assessments. Thus, we sought to elucidate Injury Causation Scenarios (ICS's) in children restrained by seat belts in nearside impacts. Included in the study were 4 to 15 year old children, involved in a side impact, seated on the nearside in the rear rows, restrained by a seat belt alone (no booster seats or side airbags) and who received an AIS 2+ injury. A Contact Point Map summarized the vehicle components that contribute to the injuries. The majority of head and face contacts points were found horizontally within the rear half of the window, and vertically from the window sill to the center of the window, and were a result of contact with both interior structures and structures on the crash partner.
Technical Paper

The Effect of Pretensioning and Age on Torso Rollout in Restrained Human Volunteers in Far-Side Lateral and Oblique Loading

2012-10-29
2012-22-0012
Far-side side impact loading of a seat belt restrained occupant has been shown to lead to torso slip out of the shoulder belt. A pretensioned seat belt may provide an effective countermeasure to torso rollout; however the effectiveness may vary with age due to increased flexibility of the pediatric spine compared to adults. To explore this effect, low-speed lateral (90°) and oblique (60°) sled tests were conducted using male human volunteers (20 subjects: 9-14 years old, 10 subjects: 18-30 years old), in which the crash pulse safety envelope was defined from an amusement park bumper-car impact. Each subject was restrained by a lap and shoulder belt system equipped with an electromechanical motorized seat belt retractor (EMSR) and photo-reflective targets were attached to a tight-fitting headpiece or adhered to the skin overlying key skeletal landmarks.
X