Refine Your Search

null

Search Results

Viewing 1 to 12 of 12
Journal Article

Effect of Fuel and Thermal Stratifications on the Operational Range of an HCCI Gasoline Engine Using the Blow-Down Super Charge System

2010-04-12
2010-01-0845
In order to extend the HCCI high load operational limit, the effects of the distributions of temperature and fuel concentration on pressure rise rate (dP/dθ) were investigated through theoretical and experimental methods. The Blow-Down Super Charge (BDSC) and the EGR guide parts are employed simultaneously to enhance thermal stratification inside the cylinder. And also, to control the distribution of fuel concentration, direct fuel injection system was used. As a first step, the effect of spatial temperature distribution on maximum pressure rise rate (dP/dθmax) was investigated. The influence of the EGR guide parts on the temperature distribution was investigated using 3-D numerical simulation. Simulation results showed that the temperature difference between high temperature zone and low temperature zone increased by using EGR guide parts together with the BDSC system.
Journal Article

A Study of Low Speed Preignition Mechanism in Highly Boosted SI Gasoline Engines

2015-09-01
2015-01-1865
The authors investigated the reasons of how a preignition occurs in a highly boosted gasoline engine. Based on the authors' experimental results, theoretical investigations on the processes of how a particle of oil or solid comes out into the cylinder and how a preignition occurs from the particle. As a result, many factors, such as the in-cylinder temperature, the pressure, the equivalence ratio and the component of additives in the lubricating oil were found to affect the processes. Especially, CaCO3 included in an oil as an additive may be changed to CaO by heating during the expansion and exhaust strokes. Thereafter, CaO will be converted into CaCO3 again by absorbing CO2 during the intake and compression strokes. As this change is an exothermic reaction, the temperature of CaCO3 particle increases over 1000K of the chemical equilibrium temperature determined by the CO2 partial pressure.
Technical Paper

An Experimental Study of a Gasoline HCCI Engine Using the Blow-Down Super Charge System

2009-04-20
2009-01-0496
The objective of this study is to extend the high load operation limit of a gasoline HCCI engine. A new system extending the high load HCCI operation limit was proposed, and the performance of the system was experimentally demonstrated. The proposed system consists of two new techniques. The first one is the “Blow-down super charging (BDSC) system”, in which, EGR gas can be super charged into a cylinder during the early stage of compression stroke by using the exhaust blow-down pressure wave from another cylinder phased 360 degrees later/earlier in the firing order. The other one is “EGR guide” for generating a large thermal stratification inside the cylinder to reduce the rate of in-cylinder pressure rise (dP/dθ) at high load HCCI operation. The EGR guides consist of a half-circular part attached on the edge of the exhaust ports and the piston head which has a protuberant surface to control the mixing between hot EGR gas and intake air-fuel mixture.
Technical Paper

Driving Cycle Simulation of a Vehicle with Gasoline Homogeneous Charge Compression Ignition Engine Using a Low-RON Fuel

2016-10-17
2016-01-2297
An improvement of thermal efficiency of internal combustion engines is strongly required. Meanwhile, from the viewpoint of refinery, CO2 emissions and gasoline price decrease when lower octane gasoline can be used for vehicles. If lower octane gasoline is used for current vehicles, fuel consumption rate would increase due to abnormal combustion. However, if a Homogeneous Charge Compression Ignition (HCCI) engine were to be used, the effect of octane number on engine performance would be relatively small and it has been revealed that the thermal efficiency is almost unchanged. In this study, the engine performance estimation of HCCI combustion using lower octane gasoline as a vision of the future engine was achieved. To quantitatively investigate the fuel consumption performance of a gasoline HCCI engine using lower octane fuel, the estimation of fuel consumption under different driving test cycles with different transmissions is carried out using 1D engine simulation code.
Technical Paper

A Study of Control Strategy for Combution Mode Switching Between HCCI and SI With the Blowdown Supercharging System

2012-04-16
2012-01-1122
To find an ignition and combustion control strategy in a gasoline-fueled HCCI engine equipped with the BlowDown SuperCharging (BDSC) system which is previously proposed by the authors, a one-dimensional HCCI engine cycle simulator capable of predicting the ignition and heat release of HCCI combustion was developed. The ignition and the combustion models based on Livengood-Wu integral and Wiebe function were implemented in the simulator. The predictive accuracy of the developed simulator in the combustion timing, combustion duration and heat release rate was validated by comparing to experimental results. Using the developed simulator, the control strategy for the engine operating mode switching between HCCI and SI combustion was explored with focus attention on transient behaviors of air-fuel ratio, A/F, and gas-fuel ratio, G/F.
Technical Paper

Improvement in Thermal Efficiency of Lean Burn Pre-Chamber Natural Gas Engine by Optimization of Combustion System

2017-03-28
2017-01-0782
To understand the mechanism of the combustion by torch flame jet in a gas engine with pre-chamber and also to obtain the strategy of improving thermal efficiency by optimizing the structure of pre-chamber including the diameter and number of orifices, the combustion process was investigated by three dimensional numerical simulations and experiments of a single cylinder natural gas engine. As a result, the configuration of orifices was found to affect the combustion performance strongly. With the same orifice diameter of 1.5mm, thermal efficiency with 7 orifices in pre-chamber was higher than that with 4 orifices in pre-chamber, mainly due to the reduction of heat loss by decreasing the impingement of torch flame on the cylinder linear. Better thermal efficiency was achieved in this case because the flame propagated area increases rapidly while the flame jets do not impinge on the cylinder wall intensively.
Technical Paper

Numerical Investigation of the Effect of Engine Speed and Delivery Ratio on the High-Speed Knock in a Small Two-Stroke SI Engine

2022-01-09
2022-32-0080
Knocking occurs within the high-speed range of small two-stroke engines used in handheld work equipment. High-speed knock may be affected by the engine speed and delivery ratio. However, evaluation of these factors independently using experimental methods is difficult. Therefore, in this study, these factors were independently evaluated using numerical calculations. The purpose of this study was to clarify the mechanism by which the intensity of high-speed knocking that occurs in small two-stroke engines becomes stronger. The results suggest that temperature inhomogeneity due to insufficient mixing of fresh air and previously burned gas may induce high-speed knocking in the operating range at high engine speeds.
Technical Paper

Fuel Stratification Using Twin-Tumble Intake Flows to Extend Lean Limit in Super-Lean Gasoline Combustion

2018-09-10
2018-01-1664
To drastically improve thermal efficiency of a gasoline spark-ignited engine, super-lean burn is a promising solution. Although, studies of lean burn have been made by so many researchers, the realization is blocked by a cycle-to-cycle combustion variation. In this study, based on the causes of cycle-to-cycle variation clarified by the authors’ previous study, a unique method to reduce the cycle-to-cycle variation is proposed and evaluated. That is, a bulk quench at early expansion stroke could be reduced by making slight fuel stratification inside the cylinder using the twin-tumble of intake flows. As a result, the lean limit was extended with keeping low NOx and moderate THC emissions, leading to higher thermal efficiency.
Technical Paper

Numerical Simulation to Understand the Cause and Sequence of LSPI Phenomena and Suggestion of CaO Mechanism in Highly Boosted SI Combustion in Low Speed Range

2015-04-14
2015-01-0755
The authors investigated the reasons of how a preignition occurs in a highly boosted gasoline engine. Based on the authors' experimental results, theoretical investigations on the processes of how a particle of oil or solid comes out into the cylinder and how a preignition occurs from the particle. As a result, many factors, such as the in-cylinder temperature, the pressure, the equivalence ratio and the component of additives in the lubricating oil were found to affect the processes. Especially, CaCO3 included in an oil as an additive may be changed to CaO by heating during the expansion and exhaust strokes. Thereafter, CaO will be converted into CaCO3 again by absorbing CO2 during the intake and compression strokes. As this change is an exothermic reaction, the temperature of CaCO3 particle increases over 1000K of the chemical equilibrium temperature determined by the CO2 partial pressure.
Technical Paper

Investigation of Lubricating Oil Properties Effect on Low Speed Pre-Ignition

2015-09-01
2015-01-1870
The effect of properties of lubricating oil on low speed pre-ignition (LSPI) was investigated. Three different factors of oil properties such as cetane number, distillation characteristics and Calcium (Ca) additive (with and without) are prepared and examined. Then actual engine test of LSPI was carried out to evaluate the effect and to clarify the mechanism and role of lubricating oil. Finally it is clarified that the oil cetane number and/or Ca additive strongly affect LSPI phenomena.
Technical Paper

A Study of the Mechanism of High-Speed Knocking in a Two-Stroke SI Engine with High Compression Ratio

2023-10-24
2023-01-1824
Experimental methods and numerical analysis were used to investigate the mechanism of high-speed knocking that occurs in small two-stroke engines. The multi-ion probe method was used in the experiments to visualize flame propagation in the cylinder. The flame was detected by 14 ion probes grounded in the end gas region. A histogram was made of the order in which flames were detected. The characteristics of combustion in the cylinder were clarified by comparing warming up and after warming up and by extracting the features of the cycle in which knocking occurred. As a result, regions of fast flame propagation and regions prone to auto-ignition were identified. In the numerical analysis, flow and residual gas distribution in the cylinder, flame propagation and self-ignition were visualized by 3D CFD using 1D CFD calculation results as boundary conditions and initial conditions.
Technical Paper

Numerical Investigation of Knocking in a Small Two-Stroke Engine with a High Compression Ration to Improve Thermal Efficiency

2023-09-29
2023-32-0079
This study aimed to achieve both a high compression ratio and low knock intensity in a two-stroke engine. Previous research has suggested that knock intensity can be reduced by combining combustion chamber geometry and scavenging passaging design for the same engine specifications with a compression ratio of 13.7. In this report, we investigate whether low knock intensity can be achieved at compression ratios of 14.4 and 16.8 by adjusting the combustion chamber geometry and scavenging passage design. As a result, the mechanism by which combustion chamber geometry and scavenging passage design change knock intensity was clarified.
X