Refine Your Search

Topic

Search Results

Viewing 1 to 17 of 17
Journal Article

Heavy Duty Particle Measurement Programme (PMP): Exploratory Work for the Definition of the Test Protocol

2009-06-15
2009-01-1767
The heavy duty Particle Measurement Programme (PMP) inter-laboratory exercise consists of three parts: 1) the exploratory work to refine the measurement protocol, 2) the validation exercise where each lab will measure the emissions of a “golden” engine with two “golden” particle number systems simultaneously sampling from full and partial flow dilution systems, and 3) the round-robin where the emissions of a “reference” engine will be determined with a lab’s own particle number instrumentation. This paper presents the results of the exploratory work and describes the final protocol for testing in the validation exercise (and round robin) along with the necessary facility modifications required for compliance with the protocol. Key aspects of the protocol (e.g. filter material, flow rates at the full and partial flow systems, the pre-conditioning etc.) are explained and justified.
Technical Paper

On-Road Emissions of Euro 6d-TEMP Vehicles: Consequences of the Entry into Force of the RDE Regulation in Europe

2020-09-15
2020-01-2219
Human health and the environment are heavily impacted by air pollution. Air quality standards for Nitrogen dioxide (NO2) and particulate matter (PM) are commonly exceeded in Europe, particularly in urban areas with high density of traffic. Road transport contributed to 39% of NOx emissions, and 11% of PM emissions in the European Union (EU) in 2017. Measurements with Portable Emissions Measurement Systems (PEMS) showed that most Euro 5 and Euro 6b diesel vehicles emitted significantly more NOx on the road than their permissible limit in the laboratory type-approval test. In that context, EU Real Driving Emissions (EU-RDE) regulation aims at securing low on-road emissions of light duty vehicles under normal conditions of use. This paper assesses the tailpipe emissions performance of Euro 6d-TEMP gasoline and diesel passenger cars, type-approved after the entry into force of the RDE regulation in September 2017.
Technical Paper

A Methodology for Monitoring On-Road CO2 Emissions Compliance in Passenger Vehicles

2020-06-30
2020-37-0034
The European Union road transport CO2 emissions regulation foresees mandatory targets for passenger vehicles. However, several studies have shown that there is a divergence between official and real-world values that could range up to 40% compared to the NEDC reference value. The introduction of the Worldwide Harmonized Test Protocol (WLTP) limited this divergence, but it is uncertain whether it can adequately address the problem, particularly considering future evolutions of vehicle technology. In order to address this issue, the recent EU CO2-standards regulation introduces the monitoring of on-road fuel consumption and subsequently CO2 emissions by utilizing On-Board Fuel Consumption Meters (OBFCM). In the near future, all vehicles should provide instantaneous and lifetime-cumulative fuel consumption signals at the diagnostics port. Currently, the fuel consumption signal is not always available.
Journal Article

On-Site Checks of the Particle Number Measurement Systems with Polydisperse Aerosol

2012-04-16
2012-01-0873
Since 2011 a particle number (PN) limit was introduced in the European light-duty diesel vehicles legislation. The PN measurement systems consist of i) a hot diluter and an evaporation tube at 300-400°C for the removal of the volatiles (Volatile Particle Remover, VPR) and ii) a particle number counter (PNC) with a 50% cut-point (cut-off) at 23 nm. The PN measurement systems are calibrated and validated annually with monodisperse aerosol: The VPR for the particle concentration reduction factor (PCRF) and the PNC for the linearity and the cut-off size. However, there are concerns that the PN measurement systems can drift significantly over this period of time, raising concerns regarding the validity of the previous measurements, especially if the yearly validation fails.
Journal Article

Sampling of Non-Volatile Vehicle Exhaust Particles: A Simplified Guide

2012-04-16
2012-01-0443
Recently, a particle number (PN) limit was introduced in the European light-duty vehicles legislation. The legislation requires measurement of PN, and particulate mass (PM), from the full dilution tunnel with constant volume sampling (CVS). Furthermore, PN measurements will be introduced in the next stage of the European Heavy-Duty regulation. Heavy-duty engine certification can be done either from the CVS or from a partial flow dilution system (PFDS). For research and development purposes, though, measurements are often conducted from the raw exhaust, thereby avoiding the high installation costs of CVS and PFDS. Although for legislative measurements requirements exist regarding sampling and transport of the aerosol sample, such requirements do not necessarily apply for raw exhaust measurements. Thus, measurement differences are often observed depending on where in the experimental set up sampling occurs.
Technical Paper

Comparison of Particulate Matter and Number Emissions from a Floating and a Fixed Caliper Brake System of the Same Lining Formulation

2020-10-05
2020-01-1633
The particulate emissions of two brake systems were characterized in a dilution tunnel optimized for PM10 measurements. The larger of them employed a fixed caliper (FXC) and the smaller one a floating caliper (FLC). Both used ECE brake pads of the same lining formulation. Measured properties included gravimetric PM2.5 and PM10, Particle Number (PN) concentrations of both untreated and thermally treated (according to exhaust PN regulation) particles using Condensation Particle Counters (CPCs) having 23 and 10 nm cut-off sizes, and an Optical Particle Sizer (OPS). The brakes were tested over a section (trip-10) novel test cycle developed from the database of the Worldwide harmonized Light-Duty vehicles Test Procedure (WLTP). A series of trip-10 tests were performed starting from unconditioned pads, to characterize the evolution of emissions until their stabilization. Selected tests were also performed over a short version of the Los Angeles City Cycle.
Technical Paper

Experimental evaluation of cottonseed oil-diesel blends as automotive fuels via vehicle and engine measurements

2007-09-16
2007-24-0126
Vegetable oils blended with diesel fuel are recognised as biofuels by the European legislation and their application is an interesting option for increasing the market share of biofuels. This paper presents results from a detailed study conducted on a Euro 3 compliant diesel passenger car and a high injection pressure test bench engine using 10% Cottonseed oil- 90% Diesel blends as fuel. The tests included fuel consumption and emissions measurements. Aim of the experimental analysis was to accurately evaluate the effect of biofuel application on a common rail engine. The measurement protocol included measurements of regulated emissions, fuel consumption and in-cylinder pressure at various operation modes. Results from the bench engine measurements are in line with those retrieved from the vehicle and indicate that the fuel tested presents good characteristics and that under certain conditions it can be applied as automotive fuel in a broader scale.
Technical Paper

Particle Emissions Characteristics of Different On-Road Vehicles

2003-05-19
2003-01-1888
Due to the stringent emission standards set worldwide, particulate matter (PM) emissions from diesel vehicles have been significantly curtailed in the last decade, and are expected to be reduced even further in the future. This evolution has brought forward two main issues: whether PM emissions should only be regulated for diesel vehicles and whether gasoline powered vehicles can be further neglected from PM emission inventories. This paper addresses these issues comparing the characteristics of particle emissions from a current diesel passenger car, a gasoline one and two small two-wheelers. It is shown that the gasoline car is a negligible source of particle emissions while the two-wheelers may be even more significant particle sources than the diesel car.
Technical Paper

Accuracy of Particle Number Measurements from Partial Flow Dilution Systems

2011-09-11
2011-24-0207
The measurement of the particle number (PN) concentration of non-volatile particles ≻23 nm was introduced in the light-duty vehicles regulation; the heavy-duty regulation followed. Based on the findings of the Particle Measurement Program (PMP), heavy-duty inter-laboratory exercise, the PN concentration measurement can be conducted either from the full dilution tunnel with constant volume sampling (CVS) or from the partial flow dilution system (PFDS). However, there are no other studies that investigate whether the PN results from the two systems are equivalent. In addition, even the PMP study never investigated the uncertainty that is introduced at the final result from the extraction of a flow by a PN system from the PFDS. In this work we investigate the uncertainty for the three possible cases, i.e., considering a constant extracted flow from the PFDS, sending a signal with 1 Hz frequency to the PFDS, or feeding back the extracted flow to the PFDS.
Technical Paper

Evolution of Passenger Car Emission in Germany - A Comparative Assessment of Two Forecast Models

1993-11-01
931988
Two models for the forecast of road traffic emissions, independently developed in parallel, are comparatively presented and assessed: EPROG developed by BMW and enlarged by VDA for a national application (Germany) and FOREMOVE, developed for application on European Community scale. The analysis of the methodological character of the two algorithms proves that the models are fundamentally similar with regard to the basic calculation schemes used for the emissions. The same holds true as far as the significant dependencies of the emission factors, and the recognition and incorporation of the fundamental framework referring to traffic important parameters (speeds, mileage and mileage distribution etc) are concerned.
Technical Paper

Overview of the European “Particulates” Project on the Characterization of Exhaust Particulate Emissions from Road Vehicles: Results for Heavy Duty Engines

2004-06-08
2004-01-1986
This paper presents an overview of the results on heavy duty engines collected in the “PARTICULATES” project, which aimed at the characterization of exhaust particle emissions from road vehicles. The same exhaust gas sampling and measurement system as employed for the measurements on light duty vehicles [1] was used. Measurements were made in three labs to evaluate a wide range of particulate properties with a range of heavy duty engines and fuels. The measured properties included particle number, with focus separately on nucleation mode and solid particles, particle active surface and total mass. The sample consisted of 10 engines, ranging from Euro-I to prototype Euro-V technologies. The same core diesel fuels were used as in the light duty programme, mainly differentiated with respect to their sulphur content. Additional fuels were tested by some partners to extend the knowledge base.
Technical Paper

Overview of the European “Particulates” Project on the Characterization of Exhaust Particulate Emissions From Road Vehicles: Results for Light-Duty Vehicles

2004-06-08
2004-01-1985
This paper presents an overview of the results on light duty vehicles collected in the “PARTICULATES” project which aimed at the characterization of exhaust particle emissions from road vehicles. A novel measurement protocol, developed to promote the production of nucleation mode particles over transient cycles, has been successfully employed in several labs to evaluate a wide range of particulate properties with a range of light duty vehicles and fuels. The measured properties included particle number, with focus separately on nucleation mode and solid particles, particle active surface and total mass. The vehicle sample consisted of 22 cars, including conventional diesels, particle filter equipped diesels, port fuel injected and direct injection spark ignition cars. Four diesel and three gasoline fuels were used, mainly differentiated with respect to their sulfur content which was ranging from 300 to below 10 mg/kg.
Technical Paper

A Model Based Definition of a Reference CO2 Emissions Value for Passenger Cars under Real World Conditions

2018-05-30
2018-37-0031
With the adoption of the Worldwide harmonized Light Vehicles Test Procedure (WLTP) and the Real Driving Emissions (RDE) regulations for testing and monitoring the vehicle pollutant emissions, as well as CO2 and fuel consumption, the gap between real world and type approval performances is expected to decrease to a large extent. With respect to CO2, however, WLTP is not expected to fully eliminate the reported 40% discrepancy between real world and type approval values. This is mainly attributed to the fact that laboratory tests take place under average controlled conditions that do not fully replicate the environmental and traffic conditions experienced over daily driving across Europe. In addition, any uncertainties of a pre-defined test protocol and the vehicle operation can be optimized to lower the CO2 emissions of the type approval test. Such issues can be minimized in principle with the adoption of a real-world test for fuel consumption.
Technical Paper

Development of a Template Model and Simulation Approach for Quantifying the Effect of WLTP Introduction on Light Duty Vehicle CO2 Emissions and Fuel Consumption

2015-09-06
2015-24-2391
The paper describes the development of a modelling approach to simulate the effect of the new Worldwide harmonized Light duty Test Procedure (WLTP) on the certified CO2 emissions of light duty vehicles. The European fleet has been divided into a number of segments based on specific vehicle characteristics and technologies. Representative vehicles for each segment were selected. A test protocol has been developed in order to generate the necessary data for the validation of the vehicle simulation models. In order to minimize the sources of uncertainty and the effects of flexibilities, a reference “template model” was developed to be used in the study. Subsequently, vehicle models were developed using AVL Cruise simulation software based on the above mentioned template model. The various components and sub-modules of the models, as well as their input parameters, have been defined with the support of the respective OEMs.
Technical Paper

Emissions Optimization Potential of a Diesel Engine Running on HVO: A Combined Experimental and Simulation Investigation

2019-09-09
2019-24-0039
The present work investigates a number of recalibration possibilities of a common rail turbocharged diesel engine, aiming at the improvement of its emissions performance and fuel consumption (FC), with Hydrotreated Vegetable Oil (HVO). Initially, steady-state experimental data with nominal engine settings revealed HVO benefits as a drop-in fuel. Under these conditions, pure HVO results in lower engine-out PM emissions, lower CO2 emissions, and lower mass-based FC, while the respective NOx emissions present a mixed trend. In mid loads and speeds NOx emissions of HVO are lower while at higher loads and speeds are slightly higher compared to conventional diesel. At a second step, a combustion model was developed, in order to investigate the possible re-adjustments of IT (Injection Timing) and EGR (Exhaust Gas Recirculation) settings in order to exploit HVO’s properties for further reduction of emissions and FC.
Journal Article

Development of Measurement Methodology for Sub 23 nm Particle Number (PN) Measurements

2020-09-15
2020-01-2211
A proposal for sub-23 nm Solid Particle Number (SPN) measurement method was developed by the Particle Measurement Programme (PMP) group, based on the current SPN measurement method. In the proposal, a Particle Number Counter (PNC) having (65 ± 15)% counting efficiency at 10 nm and >90% at 15 nm (PNC10) replaces the current regulation PNC efficiency of 50±12% at 23 nm and >90% at 41 nm. Additionally, a catalytically active evaporation tube (CS) is required for sub-23 nm measurement method instead of the non-reactive evaporation tube (ET) of the current regulation. Here experimental work carried out at the JRC to address the issues of sub-23 nm SPN-measurement method is presented. The PNC10 was shown to be less dependent on the particle material than the PNC23, thus soot-like particles are still allowed for PNC-calibration. The high charging probability of soot-like particles was shown to have a low effect on PNC calibration uncertainties.
Technical Paper

The Potential of On-Board Data Monitoring for the Characterization of Real-World Vehicle Fuel and Energy Consumption and Emissions

2023-08-28
2023-24-0113
The upcoming Euro 7 regulation introduces the concept of continuous On-Board (emission) Monitoring (OBM), while On-Board Fuel/Energy Consumption Monitoring (OBFCM) is already an integral part of modern vehicles. The current work aims to assess whether on-board data could provide sufficient information to characterize real-world vehicle performance and emissions. Nine Euro 6d-ISC-FCM passenger cars were used, covering a wide range of powertrain technologies, from conventional gasoline and diesel to hybrid (HEV) and plug-in hybrid (PHEV) electric vehicles. Three vehicles were thoroughly tested in the laboratory and on the road, aiming at evaluating in detail the on-board data monitoring system. The evaluation concerned OBFCM device recordings of fuel consumed and distance travelled, as well as tailpipe NOx emissions and exhaust mass flow rate.
X