Refine Your Search

Topic

Search Results

Journal Article

Control-Oriented Compressor Model with Adiabatic Efficiency Extrapolation

2017-03-28
2017-01-1032
Downsizing and turbocharging with single or multiple stages has been one of the main solutions to decrease fuel consumption and harmful exhaust emissions, while keeping a sufficient power output. An accurate and reliable control-oriented compressor model can be very helpful during the development phase, as well as for engine calibration, control design, diagnostic purposes or observer design. A complete compressor model consisting of mass flow and efficiency models is developed and motivated. The proposed model is not only able to represent accurately the normal region measured in a compressor map but also it is capable to extrapolate to low compressor speeds. Moreover, the efficiency extrapolation is studied by analyzing the known problem with heat transfer from the hot turbine side, which introduces errors in the measurements done in standard gas stands.
Journal Article

The Challenges of Devising Next Generation Automotive Benchmarks

2008-04-14
2008-01-0382
More than ever, microcontroller performance in cars has a direct impact on the driving experience, on compliance with improved safety, ever-stricter emissions regulations, and on fuel economy. The simple microcontrollers formerly used in automobiles are now being replaced by powerful number-crunchers with incredible levels of peripheral integration. As a result, performance can no longer be measured in MIPS (Millions of Instructions Per Second). A microcontroller's effectiveness is based on coherent partitioning between analog and digital, hardware and software, tools and methodology. To make an informed choice among the available devices, the designer needs benchmarks that are specific to automotive applications, and which provide a realistic representation of how the device will perform in the automotive environment.
Technical Paper

Requirements for and a Systematic Method for Identifying Heat-Release Model Parameters

1998-02-23
980626
Heat release analysis by using a pressure sensor signal is a well recognized technique for evaluation of the combustion event, and also for combustion diagnostics. The analysis includes tuning of several parameters in order to accurately explain measured data. This work presents and investigates a systematic method for estimating parameters in heat release models and minimizing the arbitrary choices. In order for the procedure to be systematic there are also the requirements on the model, that it includes no inherent ambiguities, like over-parameterization with respect to the parameters and to the information contained in the measurements. The fundamental question is which parameters, in the heat release model, that can be identified by using only cylinder pressure data. The parameter estimation is based on established techniques, that constructs a predictor for the model and then minimizes a least-squares objective function of the prediction error.
Technical Paper

The Challenges of Next Generation Automotive Benchmarks

2007-04-16
2007-01-0512
More than ever, microcontroller performance in cars has a direct impact on the driving experience, on compliance with improved safety, ever-stricter emissions regulations, and on fuel economy. The simple microcontrollers formerly used in automobiles are now being replaced by powerful number-crunchers whose performance can no longer be measured in MIPS. Instead, their effectiveness is based on a coherent partitioning between analog and digital, hardware and software, tools and methodology. To make an informed choice among the available devices, what the designer needs are benchmarks that are specific to automotive applications, and which provide a realistic representation of how the device will perform in the automotive environment. This presentation will explore the role of new benchmarks in the development of complex automotive applications.
Technical Paper

Advanced Gasoline Engine Management Platform for Euro IV & CHN IV Emission Regulation

2008-06-23
2008-01-1704
The increasingly stringent requirements in relation to emission reduction and onboard diagnostics are pushing the Chinese automotive industry toward more innovative solutions and a rapid increase in electronic control performance. To manage the system complexity the architecture will require being well structure on hardware and software level. The paper introduces GEMS-K1 (Gasoline Engine Management System - Kit 1). GEMS-K1 is a platform being compliant with Euro IV emission regulation for gasoline engines. The application software is developed using modeling language, the code is automatically generated from the model. The driver software has a well defined structure including microcontroller abstraction layer and ECU abstraction layer. The hardware is following design rules to be robust, 100% testable and easy to manufacture. The electronic components use the latest innovation in terms of architecture and technologies.
Technical Paper

Engine Test Bench Turbo Mapping

2010-04-12
2010-01-1232
A method for determining turbocharger performance on installations in an engine test bench is developed and investigated. The focus is on the mapping of compressor performance but some attention is also given to the turbine mapping. An analysis of the limits that an engine installation imposes on the reachable points in the compressor map is performed, in particular it shows what corrected flows and pressure ratios can be reached and what these limitations depend on. To be able to span over a larger region of the corrected flow a throttle before the compressor is suggested and this is also verified in the test bench. Turbocharger mapping is a time consuming process and there is a need for a systematic process that can be executed automatically. An engine and test cell control structure that can be used to automate and monitor the measurements by controlling the system to the desired operating points is also proposed.
Technical Paper

Embedded System Tool to Support Debugging, Calibration, Fast Prototyping and Emulation

2004-03-08
2004-01-0304
Infineon's latest high-end automotive microcontrollers like TC1796 are complex Systems On Chip (SoC) with two processor cores and up to two internal multi-master buses. The complex interaction between cores, peripherals and environment provides a big challenge for debugging. For mission critical control like engine management the debugging approach must not be intrusive. The provided solution are dedicated Emulation Devices which are able to deal with several 10 Gbit/s of raw internal trace data with nearly no cost adder for mass production and system design. Calibration, which is used later in the development cycle, has different requirements, but is covered by the Emulation Devices as well. The architecture of TC1796ED comprises the unchanged TC1796 silicon layout, extended by a full In-Circuit Emulator (ICE) and calibration overlay memory on the same die. In most cases, the only debug/calibration tool hardware needed is a USB cable.
Technical Paper

CHEPP - A Chemical Equilibrium Program Package for Matlab

2004-03-08
2004-01-1460
A program package, that calculates chemical equilibrium and thermodynamic properties of reactants and products of a combustion reaction between fuel and air, has been developed and validated. The package consists of the following four parts: 1) A program for calculating chemical equilibrium. 2) A database that contains thermochemical information about the molecules, which comes from the GRI-Mech tables. 3) A GUI that allows the user to easily select fuels, fuel/air ratio for the reaction, and combustion products. 4) A set of functions designed to access the thermochemical database and the chemical equilibrium programs. Results are validated against both the NASA equilibrium program (Gordon and McBride, 1994) and the program developed by Olikara and Borman (1975). It is shown that the new method gives results identical to those well recognized Fortran programs.
Technical Paper

Effective System Development Partitioning

2001-03-05
2001-01-1221
In terms of modern technical systems, the automotive sector is characterized by escalating complexity and functionality requirements. The development of embedded control systems has to meet highest demands regarding process-, time- and cost-optimization. Hence, the efficiency of software development becomes a crucial competitive advantage. Systems design engineers need effective tools and methods to achieve exemplary speed and productivity within the development phase. To obtain such tools and methods, semiconductor manufacturers and tool manufacturers must work closely together. Within the joint efforts of ETAS and Infineon, the software tool suite ASCET-SD was enhanced to generate efficient C code for Infineon's TriCore architecture mapped on ETAS's real-time operating system ERCOSEK. The processor interface to application & calibration tools was realized using the ETK probe based on a JTAG/Nexus link at very high bandwidth.
Technical Paper

Current Control Strategies for Quasi-Autonomous Gate Driver

2002-03-04
2002-01-0472
Infineon proposes a Quasi-Autonomous Gate Driver (QAGD) to manage an electrically actuated component, whether electromechanical, electromagnetic, or electrohydraulic. This paper examines some current control strategies that can be implemented within the QAGD, such as: Synchronous Sampling (SYSA), Hysteresis, Improved Synchronous Sampling-Hysteresis (ISSH), Suboscillation, Suboscillation with Back EMF Feedforward (SBEF) and Synchronous Control in Rotation Coordinates (SCRC). Analysis and simulation of these strategies indicate their advantages and disadvantages, which are then summarized in a comparison chart, from which the best solution for a given application can be determined. The QAGD IC proposed by Infineon adopts this solution by integrating the current controller and the driver unit for the MOSFETs in a single package. The inverter function can therefore be implemented using one QAGD and several MOSFETs, which greatly simplify the system and decrease the costs.
Technical Paper

Semiconductor Solutions for Piezo Injector Systems

2003-03-03
2003-01-0710
Increasing fuel costs and emission regulations are driving the car manufacturers to develop powerful but efficient engines. The 3-liter car (3-liter/100 km fuel consumption → 80 miles/gallon) is one achievement of these developments. Beside the pure mechanics electronics for fuel and air management are getting the key element for further improvement. Direct Injected (DI) engines are the standard for Diesel and are looking very promising for Gasoline. This SAE paper will discuss the differences of the operation principle of a solenoid and a Piezo based injector as well as the impact and the requirements for the semiconductors on the ECU especially under respect of future emission standards. A solution from Infineon Technologies will be presented.
Technical Paper

Future Engine Control Enabling Environment Friendly Vehicle

2011-04-12
2011-01-0697
The aim of this paper is to compile the state of the art of engine control and develop scenarios for improvements in a number of applications of engine control where the pace of technology change is at its most marked. The first application is control of downsized engines with enhancement of combustion using direct injection, variable valve actuation and turbo charging. The second application is electrification of the powertrain with its impact on engine control. Various architectures are explored such as micro, mild, full hybrid and range extenders. The third application is exhaust gas after-treatment, with a focus on the trade-off between engine and after-treatment control. The fourth application is implementation of powertrain control systems, hardware, software, methods, and tools. The paper summarizes several examples where the performance depends on the availability of control systems for automotive applications.
Technical Paper

Turbo Speed Estimation Using Fixed-Point Iteration

2017-03-28
2017-01-0591
1 In modern turbocharged engines the power output is strongly connected to the turbocharger speed, through the flow characteristics of the turbocharger. Turbo speed is therefore an important state for the engine operation, but it is usually not measured or controlled directly. Still the control system must ensure that the turbo speed does not exceed its maximum allowed value to prevent damaging the turbocharger. Having access to a turbo speed signal, preferably by a cheap and reliable estimation instead of a sensor, could be beneficial for over speed protection and supervision of the turbocharger. This paper proposes a turbo speed observer that only utilizes the conditions around the compressor and a model for the compressor map. These conditions are either measured or can be more easily estimated from available sensors compared the conditions on the turbine side.
Technical Paper

Compressor Flow Extrapolation and Library Design for the Modelica Vehicle Propulsion Library - VehProLib

2016-04-05
2016-01-1037
Modelbased systems engineering is becoming an important tool when meeting the challenges of developing the complex future vehicles that fulfill the customers and legislators ever increasing demands for reduced pollutants and fuel consumption. To be able to work systematically and efficiently it is desirable to have a library of components that can be adjusted and adapted to each new situation. Turbocharged engines are complex and the compressor model serves as an in-depth example of how a library can be designed, incorporating the basic physics and allowing fine tuning as more information becomes available. A major part of the paper is the summary and compilation of a set of rules of thumb for compressor map extrapolation. The considerations discussed are extrapolation to surge, extrapolation to restriction region, and extrapolation out to choking.
Technical Paper

Rapid Gasoline Powertrain System Design and Evaluation Using a Powertrain Starter Kit

2005-04-11
2005-01-0062
Prototyping of a complete powertrain controller is not generally permissible due to the large number of subsystems involved and the resources required in making the design a reality. The availability of a complete control system reference design at an early stage in the lifecycle can greatly enhance the quality of the system definition and allows early ideas to be prototyped in the application environment. This paper describes the implementation of such a reference design for a gasoline engine and gearbox management control system, integrated into robust housing which can be used for development in a prototype vehicle. The paper also outlines the powertrain subsystems involved, discusses how the system partitioning is achieved, shows the implementation of the partitioning into the physical hardware, and concludes with presenting the system benefits which can be realized.
Technical Paper

Sensor Signal Delivery

2005-04-11
2005-01-0043
The signal delivery and quality of sensor data is of growing importance for modern automotive control applications. Sensors tend to be calibrated subsystems that are designed to stay in a defined tolerance and thus can easily be modeled. Compared to this deterministic behavior the transmission channel is time variant due to EMC and aging of contacts for example. The use of analog signaling, which is the actual state of realization in many cases, is sensitive to the time variant effects mentioned before. This time variance is hard to consider for the control system development. In this paper we will analyze the role of the sensor in the signal supply chain and discuss approaches for digital sensor-ECU communication and their potential to establish a link, which allows neglecting low level effects of the channel.
Technical Paper

MultiCore Benefits & Challenges for Automotive Applications

2008-04-14
2008-01-0989
This paper will give an overview of multicore in automotive applications, covering the trends, benefits, challenges, and implementation scenarios. The automotive silicon industry has been building multicore and multiprocessor systems for a long time. The reasons for this choice have been: increased performance, safety redundancy, increased I/O & peripheral, access to multiple architectures (performance type e.g. DSP) and technologies. In the past, multiprocessors have been mainly considered as multi-die, multi-package with simple interconnection such as serial or parallel busses with possible shared memories. The new challenge is to implement a multicore, micro-processor that combines two or more independent processors into a single package, often a single integrated circuit (IC). The multicores allow a computing device to exhibit some form of thread-level parallelism (TLP).
Technical Paper

AUDO Architecture A Solution to Automotive Micro-Controller Requirements

2000-03-06
2000-01-0145
The C166 family, based on a 16-bit core; it is nowadays an enormous success in automotive, in particular in PowerTrain. This component is the right answer for the automotive real time applications of today. It is with both, automotive customer requirements and a long automotive experience in semi-conductors that this new generation 32-bit family is borne. The objective of this document is to provide and comment on automotive requirements in terms of the new micro-controller, to show the benefits for the applications and explain how the AUDO architecture fulfils these requirements.
Technical Paper

TwinCAN - A New Milestone for Inter-Network Communication

2000-03-06
2000-01-0144
Recent trends in field bus applications, especially in the automotive section, show a very high demand for data exchange between decentralised, intelligent functional units and modules. These functional units can be grouped together to power train applications or body/convenience applications. In many cases, the coupling of local modules is done with one or more independent bus systems. The actual design and the partitioning of the modules strongly depend on application-specific requirements, such as the total amount of data to be transferred or the maximum of the tolerated latency in data delivery. A very powerful and fast field bus is the CAN bus (Controller Area Network), which supports transfers with data rates up to 1 Mbits/s. Due to the higher transmission speed and the standardized functionality, CAN is a very interesting alternative to and improvement on bus systems based on other protocols.
Technical Paper

Automatic Code Generator for Automotive Configurable I/O System

2000-03-06
2000-01-0554
The increasing legal requirements for safety, emission reduction, fuel economy and onboard diagnostic systems are forcing the market to increase complexity. This complexity must not be a reason for slowing down the introduction of new systems. For efficiency, car manufacturers and system suppliers want to focus on their core competencies and leave the micro-controller complexity to silicon vendors. Competition forces system suppliers to jump to the most “function/cost” effective solution. For this reason it is very dangerous to move in the direction of specific solutions which require a large amount of effort to modify. Therefore the market goes in the direction of standards with clear interfaces. The approach presented overcomes these obstacles by introducing a Configurable I/O System (CIOS) layer. The CIOS encompasses basic software driver objects for engine management systems encapsulating the standard sensors and actuators.
X