Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

A Metal Fibrous Filter for Diesel Hybrid Vehicles

2011-04-12
2011-01-0604
Trends towards lower vehicle fuel consumption and smaller environmental impact will increase the share of Diesel hybrids and Diesel Range Extended Vehicles (REV). Because of the Diesel engine presence and the ever tightening soot particle emissions, these vehicles will still require soot particle emissions control systems. Ceramic wall-flow monoliths are currently the key players in the Diesel Particulate Filter (DPF) market, offering certain advantages compared to other DPF technologies such as the metal based DPFs. The latter had, in the past, issues with respect to filtration efficiency, available filtration area and, sometimes, their manufacturing cost, the latter factor making them less attractive for most of the conventional Diesel engine powered vehicles. Nevertheless, metal substrate DPFs may find a better position in vehicles like Diesel hybrids and REVs in which high instant power consumption is readily offered enabling electrical filter regeneration.
Technical Paper

The Role of Fuel Cells in Commercial Vehicles

2007-10-30
2007-01-4273
Fuel Cells (FC) are promising candidates to reduce energy consumption and, hence, to improve the global climate situation due to significant gains in the process efficiencies. Whereas the development of fuel cells for passenger car applications has intensified during the last years, commercial vehicle applications have not been in the focus of developers so far. A reason for that is the limited availability of fuels such as hydrogen. Commercial vehicles are in the most cases operated with diesel fuel. AVL has developed three fuel cell applications for commercial vehicles operated with diesel fuel.
Technical Paper

A Methodology for the Fast Evaluation of the Effect of Ash Aging on the Diesel Particulate Filter Performance

2009-04-20
2009-01-0630
Establishing a certain maintenance-free time period regarding modern diesel exhaust emission control systems is of major importance nowadays. One of the most serious problems Diesel Particulate Filter (DPF) manufacturers face concerning system's durability is the performance deterioration due to the filter aging because of the accumulation of the ash particles. The evaluation of the effect of the ash aging on the filter performance is a time and cost consuming task that slows down the process of manufacturing innovative filter structures and designs. In this work we present a methodology for producing filter samples aged by accumulating ash produced by the controlled pyrolysis of oil-fuel solutions. Such ash particles bear morphological (size) and compositional similarity to ash particles collected from engine aged DPFs. The ash particles obtained are compared to those from real engine operation.
Technical Paper

Spatial Non-Uniformities in Diesel Particulate Trap Regeneration

2001-03-05
2001-01-0908
Diesel particulate trap regeneration is a complex process involving the interaction of phenomena at several scales. A hierarchy of models for the relevant physicochemical processes at the different scales of the problem (porous wall, filter channel, entire trap) is employed to obtain a rigorous description of the process in a multidimensional context. The final model structure is validated against experiments, resulting in a powerful tool for the computer-aided study of the regeneration behavior. In the present work we employ this tool to address the effect of various spatial non-uniformities on the regeneration characteristics of diesel particulate traps. Non-uniformities may include radial variations of flow, temperature and particulate concentration at the filter inlet, as well as variations of particulate loading. In addition, we study the influence of the distribution of catalytic activity along the filter wall.
X