Refine Your Search

Search Results

Viewing 1 to 6 of 6
Standard

Guidelines for Evaluating Out-of-Position Vehicle Occupant Interactions with Deploying Frontal Airbags

2008-06-17
HISTORICAL
J1980_200806
An airbag generates a considerable amount of kinetic energy during its inflation process. As a result substantial forces can be developed between the deploying airbag and the out-of-position occupant. Accident data and laboratory test results have indicated a potential for head, neck, chest, abdominal, and leg injuries from these forces. This suggests that mitigating such forces should be considered in the design of airbag restraint systems. This document outlines a comprehensive set of test guidelines that can be used for investigating the interactions that occur between the deploying airbag and the occupant who is near the module at the time of deployment. Static and dynamic tests to investigate driver and passenger systems are given. Static tests may be used to sort designs on a comparative basis. Designs that make it through the static sorting procedure may be subjected to the appropriate dynamic tests.
Standard

Guidelines for Evaluating Out-of-Position Vehicle Occupant Interactions with Deploying Frontal Airbags

2011-02-21
CURRENT
J1980_201102
An airbag generates a considerable amount of kinetic energy during its inflation process. As a result substantial forces can be developed between the deploying airbag and the out-of-position occupant. Accident data and laboratory test results have indicated a potential for head, neck, chest, abdominal, and leg injuries from these forces. This suggests that mitigating such forces should be considered in the design of airbag restraint systems. This document outlines a comprehensive set of test guidelines that can be used for investigating the interactions that occur between the deploying airbag and the occupant who is near the module at the time of deployment. Static and dynamic tests to investigate driver and passenger systems are given. Static tests may be used to sort designs on a comparative basis. Designs that make it through the static sorting procedure may be subjected to the appropriate dynamic tests.
Standard

Guidelines for Evaluating Out-of-Position Vehicle Occupant Interactions with Deploying Frontal Airbags

2001-12-27
HISTORICAL
J1980_200112
An airbag generates a considerable amount of kinetic energy during its inflation process. As a result substantial forces can be developed between the deploying airbag and the out-of-position occupant. Accident data and laboratory test results have indicated a potential for head, neck, chest, abdominal, and leg injuries from these forces. This suggests that mitigating such forces should be considered in the design of airbag restraint systems. This document outlines a comprehensive set of test guidelines that can be used for investigating the interactions that occur between the deploying airbag and the occupant who is near the module at the time of deployment. Static and dynamic tests to investigate driver and passenger systems are given. Static tests may be used to sort designs on a comparative basis. Designs that make it through the static sorting procedure may be subjected to the appropriate dynamic tests.
Standard

Guidelines for Evaluating Child Restraint System Interactions with Deploying Airbags

2011-02-24
CURRENT
J2189_201102
This SAE Information Report prescribes dummies, procedures, and configurations that can be used for investigating the interactions that might occur between a deploying airbag and a child restrained by a child restraint system (CRS). During the inflation process, airbags generate a considerable amount of kinetic energy which can result in substantial forces being applied to a child who is restrained in a CRS in the front seat of a vehicle. Field data collected by the special crash investigation team of the National Highway Traffic Safety Administration (NHTSA) indicate that fatal forces can be developed. In response to these field data, NHTSA added a series of airbag/child interaction tests and limits to the Code of Federal Regulations (CFR 571.208) that deal with occupant protection, commonly known as Federal Motor Vehicle Safety Standards (FMVSS 208).
Standard

Human Mechanical Impact Response Characteristics - Response of the Human Neck to Inertial Loading by the Head for Automotive Seated Postures

2011-02-21
CURRENT
J1460/2_201102
This series of reports provides response characteristics of the head, face, neck, shoulder, thorax, lumbar spine, abdomen, pelvis, and lower extremities. In each report, the descriptions of human impact response are based on data judged by the subcommittee to provide the most appropriate information for the development of human surrogates.
Standard

Human Mechanical Response Characteristics

2013-02-21
CURRENT
J1460_201302
While this report does not include a discussion of all of the available data defining human response or address all body areas, for those areas addressed it does utilize references generally judged by those in the field to be practical and meaningful guidelines for the development of human surrogates. This report is intended to be a “living” document that will be updated periodically. A number of problems need to be addressed in defining human impact response characteristics. There is the problem of human response variability from subject to subject in volunteer tests. There is the problem of extrapolating such volunteer data which are obtained at low impact severities to higher impact severities using human cadaver response data obtained at injurious levels of impacts. Live animal experiments have been conducted over the years in an attempt to define human impact response and tolerance.
X