Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Droplet Sizes and Velocities in a Transient Diesel Fuel Spray

1990-02-01
900397
Simultaneous droplet sizes and velocities were obtained for a transient diesel fuel spray in a quiescent chamber at atmospheric temperature and pressure. Instantaneous injection pressure, needle lift, and rate of injection were also measured, allowing calculation of the instantaneous nozzle discharge coefficient. Short-exposure still photographs were obtained at various chamber pressure and densities to further investigate this spray. Correlations between droplet size and velocity were determined at each crank angle to observe the detailed nature of the transient events occurring in this transient diesel fuel spray. As expected, peak mean and rms velocities are observed in the center of the spray. Measured average velocities are consistent with a calculated value, using the discharge coefficient for the nozzle and the known rate of fuel injection.
Technical Paper

Measurement and Modeling of Thermal Flows in an Air-Cooled Engine

1996-08-01
961731
Control of the flow of thermal energy in an air-cooled engine is important to the overall performance of the engine because of potential effects on engine performance, durability, design, and emissions. A methodology is being developed for the assessment of thermal flows in air-cooled engines, which includes the use of cycle simulation and in-cylinder heat flux measurements. The mechanism for the combination of cycle simulation, the measurement of in-cylinder heat flux and wall temperatures, and comparison of predicted and measured heat flux in the methodology is presented. The methodology consists of both simulation and experimental phases. To begin, a one-dimensional gas dynamics code (WAVE) has been used in conjunction with a detailed in-cylinder flow and combustion model (IRIS) in order to simulate engine operation in a variety of operating conditions. The methods used to apply the model to the air-cooled engine case are described in detail.
Technical Paper

Application of Conditional Sampling to the Study of Cyclic Variability in a Spark-Ignition Engine

1987-11-08
871173
Conditional sampling of cylinder-pressure data is used to investigate cyclic variability in a premixed-charge spark-ignited engine operating under fuel-lean conditions. Unlike straight ensemble averaging of pressure data, conditional sampling applies a set of constraints to the pressure data such that like combustion events can be identified and grouped together. Ensemble averaging of pressure data from an engine that exhibits significant cycle-to-cycle variation is shown to produce a mean pressure history that is not representative of the combustion process. Conditional sampling provides a means of identifying and analyzing the different groups of pressure histories and therefore the different types of combustion processes that occur in an engine that exhibits cyclic variability.
X