Refine Your Search

Search Results

Viewing 1 to 16 of 16
Journal Article

An Optical Investigation of Ignition Processes in Fuel Reactivity Controlled PCCI Combustion

2010-04-12
2010-01-0345
The ignition process of fuel reactivity controlled PCCI combustion was investigated using engine experiments and detailed CFD modeling. The experiments were performed using a modified all metal heavy-duty, compression-ignition engine. The engine was fueled using commercially available gasoline (PON 91.6) and ULSD diesel delivered through separate port and direct injection systems, respectively. Experiments were conducted at a steady state-engine load of 4.5 bar IMEP and speed of 1300 rev/min. In-cylinder optical measurements focused on understanding the fuel decomposition and fuel reactivity stratification provided through the charge preparation. The measurement technique utilized point location optical access through a modified cylinder head with two access points in the firedeck. Optical measurements of natural thermal emission were performed with an FTIR operating in the 2-4.5 μm spectral region.
Journal Article

Investigation of the Combustion Instability-NOx Tradeoff in a Dual Fuel Reactivity Controlled Compression Ignition (RCCI) Engine

2015-04-14
2015-01-0841
The tradeoff between NOx emissions and combustion instability in an engine operating in the dual-fuel Reactivity Controlled Compression Ignition (RCCI) combustion mode was investigated using a combination of engine experiments and detailed CFD modeling. Experiments were performed on a single cylinder version of a General Motors/Fiat JTD 1.9L four-cylinder diesel engine. Gasoline was injected far upstream of the intake valve using an air assisted injector and fuel vaporization system and diesel was injected directly into the cylinder using a common rail injector. The timing of the diesel injection was swept from −70° ATDC to −20° ATDC while the gasoline percentage was adjusted to hold the average combustion phasing (CA50) and load (IMEPg) constant at 0.5° ATDC and 7 bar, respectively. At each operating point the variation in IMEP, peak PRR, and CA50 was calculated from the measured cylinder pressure trace and NOx, CO, soot and UHC were recorded.
Technical Paper

A Study of the Effect of Electronic Fuel Injection on the CFR F5 Cetane Rating Engine

2020-09-15
2020-01-2115
At recent American Society for Testing and Materials (ASTM) Subcommittee D02.01 meetings, committee members and attendees from the petroleum industry have reiterated a longstanding desire to see precision improvements to the ASTM D613 Standard Test Method for Cetane Number of Diesel Fuel Oil. The existing ASTM D613 precision limits were calculated using ASTM National Exchange Group (NEG) monthly test data from the mid-1970s through the early 1990s. Over the past few decades, many detailed studies were performed to identify and better understand the shortcomings of the cetane method (both engine equipment and instrumentation). Many of these studies concluded that inconsistent combustion is the main contributing factor behind the lack of precision in the cetane number method, followed by shortcomings in the instrumentation used to measure ignition delay.
Journal Article

Fuel Reactivity Controlled Compression Ignition (RCCI) Combustion in Light- and Heavy-Duty Engines

2011-04-12
2011-01-0357
Single-cylinder engine experiments were used to investigate a fuel reactivity controlled compression ignition (RCCI) concept in both light- and heavy-duty engines and comparisons were made between the two engine classes. It was found that with only small changes in the injection parameters, the combustion characteristics of the heavy-duty engine could be adequately reproduced in the light-duty engine. Comparisons of the emissions and performance showed that both engines can simultaneously achieve NOx below 0.05 g/kW-hr, soot below 0.01 g/kW-hr, ringing intensity below 4 MW/m2, and gross indicated efficiencies above 50 per cent. However, it was found that the peak gross indicated efficiency of the baseline light-duty engine was approximately 7 per cent lower than the heavy-duty engine. The energy balances of the two engines were compared and it was found that the largest factor contributing to the lower efficiency of the light-duty engine was increased heat transfer losses.
Journal Article

Fuel Effects on Reactivity Controlled Compression Ignition (RCCI) Combustion at Low Load

2011-04-12
2011-01-0361
Reactivity Controlled Compression Ignition combustion (RCCI) has been demonstrated at mid to high loads [1, 2, 3, 4, 5, 6] as a method to operate an internal combustion engine that produces low NOx and low PM emissions with high thermal efficiency. The current study investigates RCCI engine operation at loads of 2 and 4.5 bar gross IMEP at engine speeds between 800 and 1700 rev/min. This load range was selected to cover the range from the previous work of 6 bar gIMEP down to an off-idle load at 2 bar. The fueling strategy for the low load investigation consisted of in-cylinder fuel blending using port-fuel-injection of gasoline and early cycle, direct-injection of either diesel fuel or gasoline doped with 3.5% by volume 2-EHN (2-ethylhexyl nitrate). At these loads, engine operating conditions such as inlet air temperature, port fuel percentage, and engine speed were varied to investigate their effect on combustion.
Journal Article

Piston Bowl Optimization for RCCI Combustion in a Light-Duty Multi-Cylinder Engine

2012-04-16
2012-01-0380
Reactivity Controlled Compression Ignition (RCCI) is an engine combustion strategy that produces low NO and PM emissions with high thermal efficiency. Previous RCCI research has been investigated in single-cylinder heavy-duty engines. The current study investigates RCCI operation in a light-duty multi-cylinder engine at 3 operating points. These operating points were chosen to cover a range of conditions seen in the US EPA light-duty FTP test. The operating points were chosen by the Ad Hoc working group to simulate operation in the FTP test. The fueling strategy for the engine experiments consisted of in-cylinder fuel blending using port fuel-injection (PFI) of gasoline and early-cycle, direct-injection (DI) of diesel fuel. At these 3 points, the stock engine configuration is compared to operation with both the original equipment manufacturer (OEM) and custom-machined pistons designed for RCCI operation.
Journal Article

System and Second Law Analysis of the Effects of Reformed Fuel Composition in “Single” Fuel RCCI Combustion

2018-04-03
2018-01-0264
Dual-fuel reactivity controlled compression ignition (RCCI) combustion is a promising method to achieve high efficiency with near-zero NOx and soot emissions; however, the requirement to carry two fuels on board limits practical application. Advancements in catalytic reforming have demonstrated the ability to generate syngas (a mixture of CO and hydrogen) from a single hydrocarbon stream. This syngas mixture can then be used as the low reactivity fuel stream to enable single fuel RCCI combustion. The present effort uses a combination of engine experiments and system level modeling to investigate reformed fuel RCCI combustion. The impact of reformer composition is investigated by varying the syngas composition from 10% H2 to approximately 80% H2. The results of the investigation show that reformed fuel RCCI combustion is possible over a wide range of H2/CO ratios.
Technical Paper

In-Cylinder Fuel Blending of Gasoline/Diesel for Improved Efficiency and Lowest Possible Emissions on a Multi-Cylinder Light-Duty Diesel Engine

2010-10-25
2010-01-2206
In-cylinder fuel blending of gasoline with diesel fuel is investigated on a multi-cylinder light-duty diesel engine as a strategy to control in-cylinder fuel reactivity for improved efficiency and lowest possible emissions. This approach was developed and demonstrated at the University of Wisconsin through modeling and single-cylinder engine experiments. The objective of this study is to better understand the potential and challenges of this method on a multi-cylinder engine. More specifically, the effect of cylinder-to-cylinder imbalances and in-cylinder charge motion as well as the potential limitations imposed by real-world turbo-machinery were investigated on a 1.9-liter four-cylinder engine. This investigation focused on one engine condition, 2300 rpm, 5.5 bar net mean effective pressure (NMEP). Gasoline was introduced with a port-fuel-injection system.
Technical Paper

Reactivity Controlled Compression Ignition (RCCI) Heavy-Duty Engine Operation at Mid-and High-Loads with Conventional and Alternative Fuels

2011-04-12
2011-01-0363
Engine experiments and multi-dimensional modeling were used to explore Reactivity Controlled Compression Ignition (RCCI) to realize highly-efficient combustion with near zero levels of NOx and PM. In-cylinder fuel blending using port-fuel-injection of a low reactivity fuel and optimized direct-injection of higher reactivity fuels was used to control combustion phasing and duration. In addition to injection and operating parameters, the study explored the effect of fuel properties by considering both gasoline-diesel dual-fuel operation, ethanol (E85)-diesel dual fuel operation, and a single fuel gasoline-gasoline+DTBP (di-tert butyl peroxide cetane improver). Remarkably, high gross indicated thermal efficiencies were achieved, reaching 59%, 56%, and 57% for E85-diesel, gasoline-diesel, and gasoline-gasoline+DTBP respectively.
Technical Paper

Light-Duty Reactivity Controlled Compression Ignition Combustion Using a Cetane Improver

2012-04-16
2012-01-1110
Premixed compression ignition (PCI) strategies offer the potential for simultaneously low NOx and soot emissions and diesel-like efficiency. However, these strategies are generally confined to low loads due to difficulties controlling the combustion phasing and heat release rate. Recent experiments have demonstrated that dual-fuel reactivity-controlled compression ignition (RCCI) combustion can improve PCI combustion control and expand the PCI load range. Previous studies have explored RCCI operation using port-fuel injection (PFI) of gasoline and direct-injection (DI) of diesel fuel. In this study, experiments are performed using a light-duty, single-cylinder research engine to investigate RCCI combustion using a single fuel with the addition of a cetane improver 2-ethylhexyl nitrate (EHN). The fuel delivery strategy consists of port-fuel injection of E10 (i.e., 10% ethanol in gasoline) and direct-injection of E10 mixed with 3% EHN.
Technical Paper

Injection Effects in Low Load RCCI Dual-Fuel Combustion

2011-09-11
2011-24-0047
Dual-fuel reactivity controlled compression ignition (RCCI) engine experiments were conducted with port fuel injection of isooctane and direct injection of n-heptane. The experiments were conducted at a nominal load of 4.75 bar IMEPg, with low isooctane equivalence ratios. Two sets of experiments explored the effects of direct injection timing with single and double injections, and multi-dimensional CFD modeling was used to explore mixture preparation and timing effects. The findings were that if fuel-liner impingement is to be avoided, double injections provide a 40% reduction in CO and HC emissions, resulting in a 1% increase in thermal efficiency. The second engine experiment showed that there is a linear relationship between reactivity (PRF number) and intake temperature. It was also found that if the premixed fuel fraction is above a certain limit, the high-temperature heat release (HTHR) can be manipulated by changing the global PRF number of the in-cylinder fuel blend.
Technical Paper

Gasoline Compression Ignition Operation of a Heavy-Duty Engine at High Load

2018-04-03
2018-01-0898
Engine experiments were carried out on a heavy-duty single-cylinder engine to investigate the effects of Gasoline Compression Ignition on emissions and performance of a heavy-duty engine operating at a high load condition. Comparisons between gasoline fueled operation and diesel fueled operation are presented using a single, near top dead center injection. Although the fuel’s cetane numbers are very different, the combustion characteristics of the two fuels at high load are similar, with the gasoline-fueled case showing less than two crank angle degree longer ignition delay. Gasoline operation showed lower soot production at similar levels of NOx, initiating study of the impact of exhaust gas recirculation which spanned a range of NOx levels covering the range from minimal urea dosing to high urea dosing. A conventional soot-NOx tradeoff was found to exist with gasoline as exists with diesel.
Technical Paper

Performance of Gasoline Compression Ignition (GCI) with On-Demand Reactivity Enhancement over Simulated Drive Cycles

2018-04-03
2018-01-0255
Gasoline compression ignition (GCI) combustion is a promising solution to address increasingly stringent efficiency and emissions regulations imposed on the internal combustion engine. However, the high resistance to auto-ignition of modern market gasoline makes low load compression ignition (CI) operation difficult. Accordingly, a method that enables the variation of the fuel reactivity on demand is an ideal solution to address low load stability issues. Metal engine experiments conducted on a single cylinder medium-duty research engine allowed for the investigation of this strategy. The fuels used for this study were 87 octane gasoline (primary fuel stream) and diesel fuel (reactivity enhancer). Initial tests demonstrated load extension down to idle conditions with only 20% diesel by mass, which reduced to 0% at loads above 3 bar IMEPg.
Technical Paper

Reformed Fuel Substitution for Transient Peak Soot Reduction

2018-04-03
2018-01-0267
Advancements in catalytic reforming have demonstrated the ability to generate syngas (a mixture of CO and hydrogen) from a single hydrocarbon stream. This syngas mixture can then be used to replace diesel fuel and enable dual-fuel combustion strategies. The role of port-fuel injected syngas, comprised of equal parts hydrogen and carbon monoxide by volume was investigated experimentally for soot reduction benefits under a transient load change at constant speed. The syngas used for the experiments was presumed to be formed via a partial oxidation on-board fuel reforming process and delivered through gaseous injectors using a custom gas rail supplied with bottle gas, mounted in the swirl runner of the intake manifold. Time-based ramping of the direct-injected fuel with constant syngas fuel mass delivery from 2 to 8 bar brake mean effective pressure was performed on a multi-cylinder, turbocharged, light-duty engine to determine the effects of syngas on transient soot emissions.
Technical Paper

Effects of Port Angle on Scavenging of an Opposed Piston Two-Stroke Engine

2022-03-29
2022-01-0590
Opposed-piston 2-stroke (OP-2S) engines have the potential to achieve higher thermal efficiency than a typical diesel engine. However, the uniflow scavenging process is difficult to control over a wide range of speeds and loads. Scavenging performance is highly sensitive to pressure dynamics, port timings, and port design. This study proposes an analysis of the effects of port vane angle on the scavenging performance of an opposed-piston 2-stroke engine via simulation. A CFD model of a three-cylinder opposed-piston 2-stroke was developed and validated against experimental data collected by Achates Power Inc. One of the three cylinders was then isolated in a new model and simulated using cycle-averaged and cylinder-averaged initial/boundary conditions. This isolated cylinder model was used to efficiently sweep port angles from 12 degrees to 29 degrees at different pressure ratios.
Technical Paper

Prechamber Enabled Mixing Controlled Combustion - A Fuel Agnostic Technology for Future Low Carbon Heavy-Duty Engines

2022-03-29
2022-01-0449
As the global economy grows, so does the demand for heavy-duty commercial vehicles, both on-road and off-road. Currently, these vehicles are powered almost entirely by diesel engines. There is an imminent need to reduce the greenhouse gases (GHG) from this growing sector, but alternatives to the internal combustion engine face many challenges and can increase GHG emissions. For example, through simple analysis, this work will show that a Class 8 long haul on-highway truck powered entirely by battery electrics and charged from the average US electrical grid, yields significantly higher CO2 emissions per ton-mile as compared to an engine using alternative fuels. Thus, the most pragmatic and impactful way to reduce GHG emissions in commercial vehicles is using low carbon alternative fuels, such as ethanol made from renewable sources.
X