Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

Forward Collision Warning Timing in Near Term Applications

2013-04-08
2013-01-0727
Forward Collision Warning (FCW) is a system intended to warn the driver in order to reduce the number of rear end collisions or reduce the severity of collisions. However, it has the potential to generate driver annoyances and unintended consequences due to high ineffectual (false or unnecessary) alarms with a corresponding reduction in the total system effectiveness. The ineffectual alarm rate is known to be closely associated with the “time to issue warning.” This results in a conflicting set of requirements. The earlier the time the warning is issued, the greater probability of reducing the severity of the impact or eliminating it. However, with an earlier warning time there is a greater chance of ineffectual warning, which could result in significant annoyance, frequent complaints and the driver's disengagement of the FCW. Disengaging the FCW eliminates its potential benefits.
Technical Paper

Head Impact Response Comparisons of Human Surrogates

1979-02-01
791020
The response of the head to impact in the posterior-to-anterior direction was investigated with live anesthetized and post-mortem primates.* The purpose of the project was to relate animal test results to previous head impact tests conducted with cadavers (reported at the 21st Stapp Car Crash Conference (1),** and to study the differences between the living and post-mortem state in terms of mechanical response. The three-dimensional motion of the head, during and after impact, was derived from experimental measurements and expressed as kinematic quantities in various reference frames. Comparison of kinematic quantities between subjects is normally done by referring the results to a standard anatomical reference frame, or to a predefined laboratory reference frame. This paper uses an additional method for describing the kinematics of head motion through the use of Frenet-Serret frame fields.
Technical Paper

Impact Response and Injury of the Pelvis

1982-02-01
821160
Multiple axial knee impacts and/or a single lateral pelvis impact were performed on a total of 19 cadavers. The impacting surface was padded with various materials to produce different force-time and load distribution characteristics. Impact load and skeletal acceleration data are presented as functions of both time and frequency in the form of mechanical impedance. Injury descriptions based on gross autopsy are given. The kinematic response of the pelvis during and after impact is presented to indicate the similarities and differences in response of the pelvis for various load levels. While the impact response data cannot prescribe a specific tolerance level for the pelvis, they do indicate variables which must be considered and some potential problems in developing an accurate injury criterion.
Technical Paper

Head and Neck Response to Axial Impacts

1984-10-01
841667
Two series of impacts to the head in the superior-inferior direction using 19 unembalmed cadavers are reported. The first series of five tests was aimed at generating kinematic and dynamic response to sub-injurious impacts for the purpose of defining the mechanical characteristics of the undamaged head-neck-spine system in the S-I direction. The second series of fourteen tests was intended to define injury tolerance levels for a selected subject configuration. A 10-kg impactor was used to deliver the impact to the crown at a nominal velocity of 8 m/s for the first series, and between 7 and 11 m/s for the second series. Measurements made in the first series include the impact velocity, force, and energy, the head three-dimensional kinematics, forces and moments at the occipital condyles, and accelerations of the T1, T6, and T12 vertebrae. Impact impedance curves were also generated.
Technical Paper

Thoracic Response to FrontalImpact

1985-04-01
851721
Heart-aortic trauma was investigated using live, anesthetized and postmortem canines subjected to frontal impact with a blunt impactor. The major focuses of this research program were: trauma to the heart aortic system, the kinematic response of the thoracic cage, and pressure in the ascending and descending aorta.
Technical Paper

Thoraco-Abdominal Response to Steering Wheel Impacts

1985-12-01
851737
Mechanisms of thoraco-abdominal trauma were investigated utilizing unembalmed, repressurized human cadavers subjected to frontal impact with a steering wheel assembly. The focus of this research program was on trauma to the soft-tissue organs surrounded by the thoracic cage, as well as on the kinematic response of the thoracic cage. The results are compared to other thoraco-abdominal research programs conducted at the University of Michigan Transportation Research Institute (UMTRI) during the last eight years.
X