Refine Your Search

Search Results

Viewing 1 to 20 of 20
Standard

LIMITS AND METHODS OF MEASUREMENT OF RADIO INTERFERENCE CHARACTERISTICS OF VEHICLES AND DEVICES (20–1000 MHz)

1978-10-01
HISTORICAL
J551F_197810
This SAE Standard covers the measurement of Impulse Electric Field Strength radiated over the frequency range of 20–1000 MHz from a vehicle or other device powered by an internal combustion engine or electric motor. Operation of all engines (main and auxiliary) on a vehicle or other device is included. All equipment normally operating when the engine is running is also included, except operator-controlled equipment, which is excluded. The recommended limit applies only to complete vehicles or devices in their final manufactured form. Vehicle mounted rectifiers used for battery charging in electric vehicles are included in this specification when operated in their charging mode.
Standard

LIMITS AND METHODS OF MEASUREMENT OF RADIO INTERFERENCE CHARACTERISTICS OF VEHICLES AND DEVICES (20–1000 MHz)

1977-06-01
HISTORICAL
J551E_197706
This standard covers the measurement of impulsive electromagnetic radiation over the frequency range of 20–1000 MHz from a vehicle or other device powered by an internal combustion engine or electric motor. Operation of all engines (main and auxiliary) on a vehicle or other device is included. All equipment normally operating when the engine is running is also included, except operator-controlled equipment, which is excluded. The recommended limit applies only to complete vehicles or devices in their final manufactured form. Vehicle mounted rectifiers used for battery charging in electric vehicles are included in this specification when operated in their charging mode.
Standard

MEASUREMENT OF ELECTROMAGNETIC RADIATION FROM A MOTOR VEHICLE OR OTHER INTERNAL COMBUSTION POWERED DEVICE (EXCLUDING AIRCRAFT) (20-1000 MHz)

1976-11-01
HISTORICAL
J551D_197611
This standard covers the measurement of impulsive electromagnetic radiation over the frequency range of 20 to 1(100 MHz from a motor vehicle or other device powered by an internal combustion engine. Operation of all engines (main and auxiliary) on a vehicle or other device is included. All equipment normally operating when the engine is running is also included, except operator-controlled equipment, which is excluded. The recommended limit applies only to complete vehicles or devices in their final manufactured form.
Standard

Electronmagnetic Compatibility Measurement Procedure for Vehicle Components - Part 21: Immunity to Electromagnetic Fields, 30 MHz to 18 GHz, Absorber-Lined Chamber

2013-05-28
CURRENT
J1113/21_201305
This part of SAE J1113 specifies test methods and procedures for testing electromagnetic immunity (of vehicle radiation sources) of electronic components for passenger cars and commercial vehicles. To perform this test method, the electronic module along with the wiring harness (prototype or standard test harness) and peripheral devices will be subjected to the electromagnetic disturbance generated inside an absorber-lined chamber. The electromagnetic disturbances considered in this part of SAE J1113 are limited to continuous narrowband electromagnetic fields. Immunity measurements of complete vehicles are generally only performed at the vehicle manufacturer. The reasons, for example, are high costs of a large absorber-lined chamber, preserving the secrecy of prototypes, or the large number of different vehicle models. Therefore, for research, development and quality control, a laboratory measuring method shall be applied by the manufacturers.
Standard

Electromagnetic Compatibility Measurements Procedure for Vehicle Components - Part 27 - Immunity to Radiated Electromagnetic Fields - Mode Stir Reverberation Method

2017-10-10
HISTORICAL
J1113/27_201710
Vehicle electrical/electronic systems may be affected when immersed in an electromagnetic field generated by sources such as radio and TV broadcast stations, radar and communication sites, mobile transmitters, cellular phones, etc. The reverberation method is used to evaluate the immunity of electronic devices in the frequency range of 500 MHz to 2.0 GHz, with possible extensions to 200 MHz and 10 GHz, depending upon chamber size and construction. Optional pulse modulation testing at HIRF (High Intensity Radiated Fields) test levels, based upon currently known environmental threats, has been added to this revision of the standard. This document addresses the Mode Stir (Continuous Stirring) Reverberation testing method which has been successfully utilized as a design and production stage development tool for many years. The Mode Tuned (Stepped Tuner) Reverberation testing method is covered in the SAE J1113-28 document.
Standard

Electromagnetic Compatibility Measurements Procedure for Vehicle Components - Part 27 - Immunity to Radiated Electromagnetic Fields - Mode Stir Reverberation Method

2012-06-06
HISTORICAL
J1113/27_201206
Vehicle electrical/electronic systems may be affected when immersed in an electromagnetic field generated by sources such as radio and TV broadcast stations, radar and communication sites, mobile transmitters, cellular phones, etc. The reverberation method is used to evaluate the immunity of electronic devices in the frequency range of 500 MHz to 2.0 GHz, with possible extensions to 200 MHz and 10 GHz, depending upon chamber size and construction. Optional pulse modulation testing at HIRF (High Intensity Radiated Fields) test levels, based upon currently known environmental threats, has been added to this revision of the standard. This document addresses the Mode Stir (Continuous Stirring) Reverberation testing method which has been successfully utilized as a design and production stage development tool for many years. The Mode Tuned (Stepped Tuner) Reverberation testing method is covered in the SAE J1113-28 document.
Standard

Measurement of Radiated Emissions from Integrated Circuits—Surface Scan Method (Loop Probe Method) 10 MHz to 3 GHz

2016-09-16
CURRENT
J1752/2_201609
This SAE Recommended Practice defines a method for evaluating the near field electric or magnetic component of the electromagnetic field at the surface of an integrated circuit (IC). This technique is capable of providing a detailed pattern of the RF sources internal to the IC. The resolution of the pattern is determined by the characteristics of the probes used and the precision of the mechanical probe positioner. The method is usable over the 10 MHz to 3 GHz frequency range with existing probe technology. The probe is mechanically scanned according to a programmed pattern in a plane parallel or perpendicular to the IC surface and the data is computer processed to provide a color-enhanced representation of field strength at the scan frequency. This procedure is applicable to measurements from an IC mounted on any circuit board that is accessible to the scan probe. For comparisons, the standardized test board shall be used.
Standard

Measurement of Radiated Emissions from Integrated Circuits—Surface Scan Method (Loop Probe Method) 10 MHz to 3 GHz

2011-06-24
HISTORICAL
J1752/2_201106
This SAE Recommended Practice defines a method for evaluating the near field electric or magnetic component of the electromagnetic field at the surface of an integrated circuit (IC). This technique is capable of providing a detailed pattern of the RF sources internal to the IC. The resolution of the pattern is determined by the characteristics of the probes used and the precision of the mechanical probe positioner. The method is usable over the 10 MHz to 3 GHz frequency range with existing probe technology. The probe is mechanically scanned according to a programmed pattern in a plane parallel or perpendicular to the IC surface and the data is computer processed to provide a color-enhanced representation of field strength at the scan frequency. This procedure is applicable to measurements from an IC mounted on any circuit board that is accessible to the scan probe. For comparisons, the standardized test board shall be used.
Standard

Electrical Interference by Conduction and Coupling—Coupling Clamp and Chattering Relay

1991-12-01
HISTORICAL
J1113/12_200010
This SAE Standard establishes a common basis for the evaluation of devices and equipment in vehicles against transient transmission by coupling via lines other than the power supply lines. The test demonstrates the immunity of the instrument, device, or equipment to coupled fast transient disturbances, such as those caused by switching of inductive loads, relay contact bouncing, etc. Two test methods are presented - Coupling Clamp and Chattering Relay.
Standard

Electrical Interference by Conduction and Coupling - Capacitive and Inductive Coupling via Lines Other than Supply Lines

2022-09-30
CURRENT
J1113/12_202209
This SAE Standard establishes test methods for the evaluation of devices and equipment in vehicles against transient transmission by coupling via lines other than the power supply lines. The test methods demonstrates the immunity of the instrument, device, or equipment to coupled fast transient disturbances, such as those caused by switching of inductive loads, relay contact bouncing, etc. Four test methods are presented in SAE J1113-12: the capacitive coupling clamp (CCC) method the direct capacitive coupling (DCC) method the inductive coupling clamp (ICC) method the capacitive/inductive coupling (CIC) method
Standard

Electromagnetic Immunity - Off-Vehicle Source (Reverberation Chamber Method) - Part 16 - Immunity to Radiated Electromagnetic Fields

2017-10-10
HISTORICAL
J551/16_201710
Vehicle electrical/electronic systems may be affected when immersed in an electromagnetic field generated by sources such as radio and TV broadcast stations, radar and communication sites, mobile transmitters, cellular phones, etc. This part of SAE J551 specifies off-vehicle radiated source test methods and procedures for testing passenger cars and commercial vehicles within a Reverberation Chamber. The method is used to evaluate the immunity of vehicle mounted electronic devices in the frequency range of 80 MHz to 2 GHz, with possible extensions 20 MHz to 10 GHz, depending upon chamber size and construction. Three methods for calibrating and applying electromagnetic fields are described in the document: 1) Mode Tuned Reverberation Chamber method, 2) Mode Stir (Standard) Reverberation Chamber method and 3) Mode Stir (Hybrid) Reverberation Chamber method.
Standard

Electromagnetic Immunity - Off-Vehicle Source (Reverberation Chamber Method) - Part 16 - Immunity to Radiated Electromagnetic Fields

2022-09-30
CURRENT
J551/16_202209
Vehicle electrical/electronic systems may be affected when immersed in an electromagnetic field generated by sources such as radio and TV broadcast stations, radar and communication sites, mobile transmitters, cellular phones, etc. This part of SAE J551 specifies off-vehicle radiated source test methods and procedures for testing passenger cars and commercial vehicles within a Reverberation Chamber. The method is used to evaluate the immunity of vehicle mounted electronic devices in the frequency range of 80 MHz to 2 GHz, with possible extensions 20 MHz to 10 GHz, depending upon chamber size and construction. Three methods for calibrating and applying electromagnetic fields are described in the document: 1) Mode Tuned Reverberation Chamber method, 2) Mode Stir (Standard) Reverberation Chamber method and 3) Mode Stir (Hybrid) Reverberation Chamber method.
Standard

Electromagnetic Immunity - Off-Vehicle Source (Reverberation Chamber Method) - Part 16 - Immunity to Radiated Electromagnetic Fields

2012-05-11
HISTORICAL
J551/16_201205
Vehicle electrical/electronic systems may be affected when immersed in an electromagnetic field generated by sources such as radio and TV broadcast stations, radar and communication sites, mobile transmitters, cellular phones, etc. This part of SAE J551 specifies off-vehicle radiated source test methods and procedures for testing passenger cars and commercial vehicles within a Reverberation Chamber. The method is used to evaluate the immunity of vehicle mounted electronic devices in the frequency range of 80 MHz to 2 GHz, with possible extensions 20 MHz to 10 GHz, depending upon chamber size and construction. Three methods for calibrating and applying electromagnetic fields are described in the document: 1) Mode Tuned Reverberation Chamber method, 2) Mode Stir (Standard) Reverberation Chamber method and 3) Mode Stir (Hybrid) Reverberation Chamber method.
Standard

Measurement of Radiated Emissions from Integrated Circuits—TEM/Wideband TEM (GTEM) Cell Method; TEM Cell (150 kHz to 1 GHz), Wideband TEM Cell (150 kHz to 8 GHz)

2017-09-22
CURRENT
J1752/3_201709
This measurement procedure defines a method for measuring the electromagnetic radiation from an integrated circuit (IC). The IC being evaluated is mounted on an IC test printed circuit board (PCB) that is clamped to a mating port (referred to as a wall port) cut in the top or bottom of a TEM or wideband TEM (GTEM) cell. The test board is not in the cell as in the conventional usage but becomes a part of the cell wall. This method is applicable to any TEM or GTEM cell modified to incorporate the wall port; however, the measured RF voltage is affected by the septum to test board (wall) spacing. This procedure was developed using a 1 GHz TEM cell with a septum to wall spacing of 45 mm and a GTEM cell with average septum to wall spacing of 45 mm over the port area. Other cells may not produce identical spectral output but may be used for comparative measurements, subject to their frequency and sensitivity limitations.
Standard

Measurement of Radiated Emissions from Integrated Circuits—TEM/Wideband TEM (GTEM) Cell Method; TEM Cell (150 kHz to 1 GHz), Wideband TEM Cell (150 kHz to 8 GHz)

2011-06-17
HISTORICAL
J1752/3_201106
This measurement procedure defines a method for measuring the electromagnetic radiation from an integrated circuit (IC). The IC being evaluated is mounted on an IC test printed circuit board (PCB) that is clamped to a mating port (referred to as a wall port) cut in the top or bottom of a TEM or wideband TEM (GTEM) cell. The test board is not in the cell as in the conventional usage but becomes a part of the cell wall. This method is applicable to any TEM or GTEM cell modified to incorporate the wall port; however, the measured RF voltage is affected by the septum to test board (wall) spacing. This procedure was developed using a 1 GHz TEM cell with a septum to wall spacing of 45 mm and a GTEM cell with average septum to wall spacing of 45 mm over the port area. Other cells may not produce identical spectral output but may be used for comparative measurements, subject to their frequency and sensitivity limitations.
X