Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

An Interactive Racing Car Driving Simulator Based on TCP/IP

2009-05-13
2009-01-1609
Real-time interaction between a driver and the simulator is problematic. In this study, the racing car driving simulator has been established, which is composed of the following functional components: Motion Controller, Simview, Scenario Editor, Application Programmer Interface (APIs) and Crash Simulation. With TCP/IP protocol, the Motion Controller receives driver's manipulation, road unevenness and crash situation of Simview, then generates motion streams that reflecting the current conditions, and sends them to Simview and to the hydraulic platform. Furthermore, by detecting and analyzing general vehicle two-dimensional impact, a kind of complete and applicable calculation method has been established, and complicated vehicle impacts can be analyzed accurately. This racecar driving simulator places a racing driver in a interactive environment, and provides the driver with high-fidelity motion, visual, auditory, and force feedback cues.
Technical Paper

Model Predictive Automatic Lane Change Control for Intelligent Vehicles

2020-02-24
2020-01-5025
As a basic link of driving behavior in urban roads, vehicle lane changing has a significant impact on traffic flow characteristics and traffic safety, and the automation of lane change is also a key issue to be solved in the field of intelligent driving. In this paper, the research on the automatic lane change control for intelligent vehicles is carried out. The main work is to build the overall structure of the vehicle's automatic lane change behavior, of which the planning and tracking are focused. The strategy of Constant Time Headway (CTH) is used in the lane change decision. The lane change trajectory adopts the model of constant velocity offset plus sine function, and the longitudinal displacement is determined by the vehicle speed when changing lanes. Model Predictive Control (MPC) theory is used to track the trajectory, which optimizes tracking accuracy and vehicle stability and constrains the range and rate of change of vehicle speed and steering angle.
X