Refine Your Search

Topic

Search Results

Technical Paper

Joint Calibration of Dual LiDARs and Camera Using a Circular Chessboard

2020-04-14
2020-01-0098
Environmental perception is a crucial subsystem in autonomous vehicles. In order to build safe and efficient traffic transportation, several researches have been proposed to build accurate, robust and real-time perception systems. Camera and LiDAR are widely equipped on autonomous self-driving cars and developed with many algorithms in recent years. The fusion system of camera and LiDAR provides state-of the-art methods for environmental perception due to the defects of single vehicular sensor. Extrinsic parameter calibration is able to align the coordinate systems of sensors and has been drawing enormous attention. However, differ from spatial alignment of two sensors’ data, joint calibration of multi-sensors (more than two sensors) should balance the degree of alignment between each two sensors.
Technical Paper

IMM-KF Algorithm for Multitarget Tracking of On-Road Vehicle

2020-04-14
2020-01-0117
Tracking vehicle trajectories is essential for autonomous vehicles and advanced driver-assistance systems to understand traffic environment and evaluate collision risk. In order to reduce the position deviation and fluctuation of tracking on-road vehicle by millimeter-wave radar (MMWR), an interactive multi-model Kalman filter (IMM-KF) tracking algorithm including data association and track management is proposed. In general, it is difficult to model the target vehicle accurately due to lack of vehicle kinematics parameters, like wheel base, uncertainty of driving behavior and limitation of sensor’s field of view. To handle the uncertainty problem, an interacting multiple model (IMM) approach using Kalman filters is employed to estimate multitarget’s states. Then the compensation of radar ego motion is achieved, since the original measurement is under the radar polar coordinate system.
Journal Article

Torque Vectoring Control for Distributed Drive Electric Vehicle Based on State Variable Feedback

2014-04-01
2014-01-0155
Torque Vectoring Control for distributed drive electric vehicle is studied. A handling improvement algorithm for normal cornering maneuvers is proposed based on state variable feedback control: Yaw rate feedback together with steer angle feedforward is employed to improve transient response and steady gain of the yaw rate, respectively. According to the feedback coefficient's influence on the transient response, an optimization function is proposed to obtain optimum feedback coefficients under different speeds. After maximum feedforward coefficients under different speeds are obtained from the constraint of the motor exterior characteristic, final feedforward coefficients are calculated according to an optimal steering characteristic. A torque distribution algorithm is presented to help the driver to speed up during the direct yaw moment control.
Journal Article

The Influences of the Subframe Flexibility on Handling and Stability Simulation When Using ADAMS/Car

2016-04-05
2016-01-1637
To analyze the K&C (kinematics and compliance), handling and stability performance of the vehicle chassis, some simulations are usually performed using a multi-body dynamics software named ADAMS. This software introduces assumptions that simplify the components of the suspension as rigid bodies. However, these assumptions weaken the accuracy of the simulation of ADAMS. Therefore the use of flexible bodies in K&C and handling and stability simulation in ADAMS is needed to conduct more precise suspension system designs. This paper mainly analyses the influences of the subframe flexibility on handling and stability simulation in ADAMS/Car. Two complete vehicle models are built using ADAMS/Car and Hypermesh. The only difference between the two models is the subframe of the front McPherson suspension. One of the subframes is simplified as a rigid body. The other one is a flexible body built using the MNF file from Hypermesh.
Journal Article

Anti-Lock Braking System Control Design on An Integrated-Electro-Hydraulic Braking System

2017-03-28
2017-01-1578
Two control strategies, safety preferred control and master cylinder oscillation control, were designed for anti-lock braking on a novel integrated-electro-hydraulic braking system (I-EHB) which has only four solenoid valves in its innovative hydraulic control unit (HCU) instead of eight in a traditional one. The main idea of safety preferred control is to reduce the hydraulic pressure provided by the motor in the master cylinder whenever a wheel tends to be locking even if some of the other wheels may need more braking torque. In contrast, regarding master cylinder oscillation control, a sinusoidal signal is given to the motor making the hydraulic pressure in the master cylinder oscillate in certain frequency and amplitude. Hardware-in-the-loop simulations were conducted to verify the effectiveness of the two control strategies mentioned above and to evaluate them.
Technical Paper

Research of Motor Control Based on Integrated-Electro-Hydraulic Braking System

2016-09-14
2016-01-1886
With development of vehicle advanced driver assistant system and intelligent techniques, safer and more intelligent Integrated-Electro-Hydraulic Braking System is required to realize brake-by-wire. Thus, more and more companies and universities developed Integrated-Electro-Hydraulic Braking System to fulfill these requirements. In this paper, an Integrated-Electro-Hydraulic Braking System is introduced, which consists of active source power, pedal feel emulator and electro control unit. As a composite system of mechanic, electron and hydraulic pressure, the Integrated-Electro-Hydraulic Braking System has complex system characteristics. Integrated-Electro-Hydraulic Braking System and active power source have very different dynamic characteristics. So algorithms of hydraulic pressure control and motor control should be apart, but algorithm of them should be united in hardware to meet integration demand.
Technical Paper

An Integrated-Electro-Hydraulic Brake System for Active Safety

2016-04-05
2016-01-1640
An integrated-electro-hydraulic brake system (I-EHB) is presented to fulfill the requirements of active safety. Because I-EHB can control the brake pressure accurately and fast. Furthermore I-EHB is a decoupled system, so it could make the maximum regenerative braking while offers the same brake pedal feeling and also good for ADAS and unmanned driving application. Based on the analysis of current electrohydraulic brake systems, regulation requirements and the requirements for brake system, the operating mode requirements of I-EHB are formed. Furthermore, system topological structure and a conceptual design are proposed. After the selection of key components, the parameter design is accomplished by modeling the system. According to the above-mentioned design method, an I-EHB prototype and test rig is made. Through the test rig, characteristics of the system are tested. Results show that this I-EHB system responded rapidly.
Technical Paper

Hydraulic Control of Integrated Electronic Hydraulic Brake System based on Command Feed-Forward

2016-04-05
2016-01-1658
With the development of vehicle electrification, electronic hydraulic brake system is gradually applied. Many companies have introduced products related to integrated electronic hydraulic brake system (I-EHB). In this paper, an I-EHB system is introduced, which uses the motor to drive the reduction mechanism as a power source for braking. The reduction mechanism is composed of a turbine, a worm, a gear and a rack. A control method based on command feed-forward is proposed to improve the hydraulic pressure control of I-EHB. Based on previous research, we simplify the system to first order system, and the theoretical design of the command feed-forward compensator is carried out. The feed-forward controller is applied, including the velocity feed-forward and the acceleration feed-forward, to improve the response speed and tracking effect of the system.
Technical Paper

Vehicle Stability Criterion Research Based on Phase Plane Method

2017-03-28
2017-01-1560
In this paper, a novel method is proposed to establish the vehicle yaw stability criterion based on the sideslip angle-yaw rate (β-r) phase plane method. First, nonlinear two degrees of freedom vehicle analysis model is established by adopting the Magic Formula of nonlinear tire model. Then, according to the model in the Matlab/Simulink environment, the β-r phase plane is gained. Emphatically, the effects of different driving conditions (front wheels steering angle, road adhesion coefficient and speed) on the stability boundaries of the phase plane are analyzed. Through a large number of simulation analysis, results show that there are two types of phase plane: curve stability region and diamond stability region, and the judgment method of the vehicle stability domain type under different driving conditions is solved.
Technical Paper

Speed Tracking Control for All-Terrain Vehicle Considering Road Slope and Saturation Constraint of Actuator

2017-09-23
2017-01-1953
In this paper, a speed tracking controller is designed for the All-terrain vehicles. The method of feedforward with state variable feedback based on conditional integrators is adopted by the proposed control algorithm. The feedforward is designed considering the influence of the road slope on the longitudinal dynamics, which makes the All-terrain vehicles satisfy the acceleration demand of the upper controller when it tracks the desired speed on the road with slope varying greatly. The road slope is estimated based on a combined kinematic and dynamic model. This method solves the problem that road slope estimation requires an accurate vehicle dynamic model and are susceptible to acceleration sensor bias. Based on the vehicle dynamic model and the nonlinear tire model, the method of conditional integration is used in the state variable feedback, which considers the saturation constraint of the actuator with the intention of preventing the divergent integral operation.
Technical Paper

Hydraulic Control of Integrated Electronic Hydraulic Brake System Based on LuGre Friction Model

2017-09-17
2017-01-2513
In this paper, an integrated electronic hydraulic brake(I-EHB) system is introduced, which is mainly composed of a motor, a worm gear, a worm, a gear, a rack etc. The friction leads the system to the creeping phenomenon and the dead zone. These phenomenon seriously affect the response speed and the hydraulic pressure control .In order to realize the accurate hydraulic pressure control of I-EHB system, a new friction compensation control method is proposed based on LuGre dynamic friction model. And the theoretical design of adaptive control method is designed based on the feedback of the master cylinder pressure and the operating state of the system. Then the stability of the control method is proved by Lyapunov theorem. A co-simulation model is built with Matlab/Simulink and AMESim, so as to prove the validity of the control method.
Technical Paper

Vehicle Sideslip Angle Estimation Considering the Tire Pneumatic Trail Variation

2018-04-03
2018-01-0571
Vehicle sideslip angle is significant for electronic stability control devices and hard to estimate due to the nonlinear and uncertain vehicle and tire dynamics. In this paper, based on the two track vehicle dynamic model considering the tire pneumatic trail variation, the vehicle sideslip angle estimation method was proposed. First, the extra steering angle of each wheel caused by kinematics and compliance characteristics of the steering system and suspension system was analyzed. The steering angle estimation method was designed. Since the pneumatic trail would vary with different tire slip angle, distances between the center of gravity (COG) and front&rear axle also change with the tire slip angle. Then, based on the dynamic pneumatic trail and estimated steering angle, we modified the traditional two track vehicle dynamic model using a brush tire model. This model matches the vehicle dynamics more accurately.
Technical Paper

Vehicle Sideslip Angle Estimation: A Review

2018-04-03
2018-01-0569
Vehicle sideslip angle estimation is of great importance to the vehicle stability control as it could not be measured directly by ordinary vehicle-mounted sensors. As a result, researchers worldwide have carried out comprehensive research in estimating the vehicle sideslip angle. First, as the attitude would affect the acceleration information measured by the IMU directly, different kinds of vehicle attitude estimation methods with multi-sensor fusion are presented. Then, the estimation algorithms of the vehicle sideslip angle are classified into the following three aspects: kinematic model based method, dynamic model based method, and fusion method. The characteristics of different estimation algorithms are also discussed. Finally, the conclusion and development trend of the sideslip angle estimation are prospected.
Technical Paper

Handling Improvement for Distributed Drive Electric Vehicle Based on Motion Tracking Control

2018-04-03
2018-01-0564
The integrated control system which combines the differential drive assisted steering (DDAS) and the direct yaw moment control (DYC) for the distributed drive electric vehicle (DDEV) is studied. A handling improvement algorithm for the normal cornering maneuvers is proposed based on motion tracking control. Considering the ideal assistant power character curves at different velocities, an open-loop DDAS control strategy is developed to respond the driver’s demand of steering wheel torque. The DYC strategy contains the steering angle feedforward and the yaw rate feedback. The steering angle feedforward control strategy is employed to improve yaw rate steady gain of vehicle. The maximum feedforward coefficients at different velocities are obtained from the constraint of the motor external characteristic, final feedforward coefficients are calculated according to the ideal assistant power character curve of the DDAS.
Technical Paper

Hybrid Brake System Control Strategy in Typical Transient Conditions

2014-04-01
2014-01-0267
The control in transient conditions when hydraulic brake and regenerative brake switch mutually is the key technical issue about electric vehicle hybrid brake system, which has a direct influence on the braking feel of driver and vehicle braking comfort. A coordination control system has been proposed, including brake force distribution correction module and motor force compensation module. Brake force distribution correction module has fixed the distribution results in hydraulic brake force intervention condition, hydraulic brake force evacuation condition and regenerative brake force low speed evacuation condition. Motor compensation module has compensated hydraulic system with motor system, which has fast and accurate response, thus the response of whole hybrid system has been improved.
Technical Paper

Evaluation Method of Harmony with Traffic Based on a Backpropagation Neural Network Optimized by Mean Impact Value

2021-06-02
2021-01-5060
With the development of autonomous driving, the penetration rate of autonomous vehicles on the road will continue to grow. As a result, the social cooperation ability of autonomous vehicles will have a great effect on the social acceptance of autonomous driving, which can be described as harmony with traffic. In order to research the evaluation method of the harmony with traffic, this paper proposes a subjective and objective mapping evaluation method based on the Mean Impact Value and Backpropagation (MIV-BP) Neural Network, with the merging vehicle on the expressway ramp as the research object. Firstly, by taking 16 original objective indexes obtained by theoretical analysis and the subjective evaluation results as input and output, respectively, the BP Neural Network model is constructed as a baseline model. Secondly, nine selected objective indexes are selected by the MIV method based on the baseline model.
Technical Paper

Study of Stability Control for Electric Vehicles with Active Control Differential

2013-04-08
2013-01-0715
This article conducts a research on the active control differential (ACD) yaw moment stability control for central motor driven automobiles. By calculation, the active control differential yaw moment generation ability which is limited by the maximum differential twist ratio and the motor output torque is not enough compared with traditional Electronic Stability Program (ESP). A Matlab and CarSim joint simulation is applied on double lane change and sine wave steering input condition, through which the active control differential effect is analyzed. It is concluded that yaw moment control using active control differential has improved the steering sensitivity and yaw rate tracking effect to some extent in double lane change test and it also has been verified that it works effectively to keep the stability of the vehicle in sine wave test.
Technical Paper

An Anti-Lock Braking Control Strategy for 4WD Electric Vehicle Based on Variable Structure Control

2013-04-08
2013-01-0717
Based on the four-wheel-drive electric vehicle (4WD EV), a variable structure control (VSC) strategy is designed in this paper for the anti-lock braking control. With nonpeak friction coefficient as target, sign judgment method of switch function in this VSC strategy is improved and a new control algorithm is proposed. The improved VSC strategy is made robust to the parameters of the algorithm and verified by the computer simulation as well as the hard-in-loop test. The results show that the slip rate can be controlled to a point in the stable area near the optimal slip ratio and the control strategy can effectively realize the anti-lock braking control.
Technical Paper

An Interactive Car-Following Model (ICFM) for the Harmony-With-Traffic Evaluation of Autonomous Vehicles

2023-04-11
2023-01-0822
Harmony-with-traffic refers to the ability of autonomous vehicles to maximize the driving benefits such as comfort, efficiency, and energy consumption of themselves and the surrounding traffic during interactive driving under traffic rules. In the test of harmony-with-traffic, one or more background vehicles that can respond to the driving behavior of the vehicle under test are required. For this purpose, the functional requirements of car-following model for harmony-with-traffic evaluation are analyzed from the dimensions of test conditions, constraints, steady state and dynamic response. Based on them, an interactive car-following model (ICFM) is developed. In this model, the concept of equivalent distance is proposed to transfer lateral influence to longitudinal. The calculation methods of expected speed are designed according to the different car-following modes divided by interaction object, reaction distance and equivalent distance.
Technical Paper

A Method for Building Vehicle Trajectory Data Sets Based on Drone Videos

2023-04-11
2023-01-0714
The research and development of data-driven highly automated driving system components such as trajectory prediction, motion planning, driving test scenario generation, and safety validation all require large amounts of naturalistic vehicle trajectory data. Therefore, a variety of data collection methods have emerged to meet the growing demand. Among these, camera-equipped drones are gaining more and more attention because of their obvious advantages. Specifically, compared to others, drones have a wider field of bird's eye view, which is less likely to be blocked, and they could collect more complete and natural vehicle trajectory data. Besides, they are not easily observed by traffic participants and ensure that the human driver behavior data collected is realistic and natural. In this paper, we present a complete vehicle trajectory data extraction framework based on aerial videos. It consists of three parts: 1) objects detection, 2) data association, and 3) data cleaning.
X