Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Stability Analysis of the MAAT Feeder Airship During Ascent and Descent with Wind Disturbances

2013-09-17
2013-01-2111
This paper looks into with the aerodynamic properties and stability of the feeder airship in the framework of MAAT project. FP7 MAAT project is based on the concept of two different types of airships (the cruiser and the feeder) working together as a transportation system. The feeder considered in this paper is a rigid airship with an unconventional envelope shape. Aerodynamic forces and moments acting on the airship during the horizontal and vertical flight modes are of special interest in this study, because the aerodynamic performance of the aircraft directly influences its general dynamic behavior and, thus, its in-flight stability. A set of CFD simulations was conducted for vertical and horizontal flights of the feeder airship. Drag and lift forces and pitching moment together with their coefficients, were obtained for different altitudes and velocities from the proposed operational ranges of the airship.
Technical Paper

Impact of the Feeder Aerodynamics Characteristics on the Power of Control Actions in Steady and Transient Regimes

2012-10-22
2012-01-2112
In this paper we consider one of the problems in the development of control system for the feeder for MAAT transportation system. This problem is connected with estimation of inboard energy requirements. Traditionally such estimation is made on the basis of static relations. They allow assessing the power required to move a solid body with a constant air speed. However a contribution from aerodynamic forces and moments can vary depending on a regime of motion (value of linear and angular accelerations, angle of attack, etc). Because of that fact, this work investigates the estimation of the total required inboard energy and contribution of aerodynamic forces and moments to it in specified feeder motion regimes. The method of assessment is based on the feeder model, which is built on the equations of the rigid body. This paper contains general structure of feeder mathematical model, which includes equations of statics, dynamics and control mechanisms.
X