Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Low Temperature Active Regeneration of Soot Using Hydrogen in a Multi-Channel Catalyzed DPF

2010-04-12
2010-01-0562
Diesel particulate filter (DPF) systems are being used to reduce the particulate matter emissions of diesel vehicles. The DPF should be regenerated after certain driving hours or distance to eliminate soot in the filter. The most widely used method is active regeneration with oxygen at 550~650°C. Fuel penalty occurs when the exhaust gas temperature is increased. The low temperature oxidation technique is needed to reduce fuel consumption. In this study, we found that hydrogen could be used to decrease the PM oxidation temperature significantly on a catalyzed DPF (CDPF). The oxidation characteristics of PM with hydrogen supplied to CDPF were studied using a partial flow system. The partial flow system was used to control temperature and a flow rate independently. The CDPF was coated with Pt/Al₂O₃ 25g/ft₃, and a multi-channel CDPF (MC CDPF) with a square cross section of 1.65 cm width and length of 10 cm was used.
Technical Paper

Experimental Study on DeNOx Performance by Plasma-Catalyst (Ag, Au/Al2O3) System

2002-10-21
2002-01-2705
Plasma-catalyst (Ag, Au/Al2O3) systems were applied to NOx reduction in a model lean-burn engine exhaust gas. Also, DeNOx test of real diesel exhaust gas was performed by plasma-Ag/Al2O3 system. In the case of model exhaust gas, the catalytic activity for NOx reduction was enhanced by the assistance of plasma in the wide temperature range. The NOx conversion efficiency of plasma-Ag/Al2O3 was 40∼90% under the condition of C3 H6 3200ppm (C1/NOx = 5.96) and 10% O2 over the temperature range of 250∼400°C. The plasma-Au/Al2 O3 system showed remarkable low temperature NOx reduction activity at 100∼250°C. The real engine full flow test was performed for 70% of the full load and at engine speed of 1500rpm. NOx removal of 46% from the diesel exhaust gas was achieved by the plasma-Ag/Al2O3 catalyst system at 364°C(C1/NOx = 6). In the case of higher C1/NOx = 10, the NOx conversion increased up to 73% at 381°C. Also, DeNOx engine tests were performed for full load of 1500, 2000 and 2500rpm.
Technical Paper

Hydrogen Effect on the DeNOX Efficiency Enhancement of Fresh and Aged Ag/Al2O3 HC-SCR in a Diesel Engine Exhaust

2011-04-12
2011-01-1278
HC-SCR is more convenient when compared to urea-SCR, since for HC-SCR, diesel fuel can be used as the reductant which is already available onboard the vehicle. However, the DeNOX efficiency for HC-SCR is lower than that of urea-SCR in both low and high temperature windows. In an attempt to improve the DeNOX efficiency of HC-SCR, the effect of hydrogen were evaluated for the fresh and aged catalyst over 2 wt.% Ag/Al₂O₃ using a Euro-4 diesel engine. In this engine bench test, diesel fuel as the reductant was injected directly into the exhaust gas stream and the hydrogen was supplied from a hydrogen bomb. The engine was operated at 2,500 rpm and BMEP 4 bar. The engine-out NOX was around 180 ppm-200 ppm. H₂/NOX and HC₁/NOX ratios were 5, 10, 20, and 3, 6, 9, respectively. The HC-SCR inlet exhaust gas temperatures were around 215°C, 245°C, and 275°C. The catalyst volumes used in this test were 2.5L and 5L for both fresh and aged catalysts.
Technical Paper

Effect of Hydrogen as an Additive on Lean Limit and Emissions of a Turbo Gasoline Direct Injection Engine

2015-09-01
2015-01-1886
For gasoline engine, thermal efficiency can be improved by using lean burn. However, combustion instability occurs when gasoline engine is operated on lean condition. Hydrogen has features that can be used for improving combustion stability of gasoline engine. In this paper, an experimental study of hydrogen effect on lean limit was carried out using a four-cylinder 2.0L turbo gasoline direct injection engine. The engine torque was fixed at 110Nm on 1600RPM, 2000RPM and 2400RPM. The results showed that lean limit was extended and brake thermal efficiency was improved by hydrogen addition. Especially, at lower engine speed, the large improvement of lean limit was achieved. However, improvement of brake thermal efficiency was achieved at high speed. HC and CO2 emissions were decreased and NO emissions increased with hydrogen addition. CO emissions were slightly reduced with hydrogen addition.
X