Refine Your Search

Search Results

Viewing 1 to 9 of 9
Standard

In-Flight Thrust Determination for Aircraft with Thrust Vectoring

2022-06-14
CURRENT
AIR6007
The purpose of this document is to provide guidance on in-flight thrust determination of engines that are impacted by intentional or unintentional thrust vectoring. However, as indicated in the Foreword, the field of aircraft thrust vectoring is varied and complex. For simplicity and coherence of purpose, this document will be limited in scope to multi-axis thrust vectoring nozzles or vanes attached to the rear of the engine or airfame; single-axis thrust vectoring and unintentional thrust vectoring (fixed shelf or deck configuration) are special cases of this discussion. Specifically excluded from this scope are thrust vectoring created primarily by airframe components such as wing flaps, etc.; lift engines, propulsive fans and thrust augmenting ejectors; and powerplants that rotate or otherwise move with respect to the airframe.
Standard

Measurement Uncertainty Applied to Cost-Effective Testing

2016-04-14
WIP
AIR5925B
The report shows how the methodology of measurement uncertainty can usefully be applied to test programs in order to optimize resources and save money. In doing so, it stresses the importance of integrating the generation of the Defined Measurement Process into more conventional project management techniques to create a Test Plan that allows accurate estimation of resources and trouble-free execution of the actual test. Finally, the report describes the need for post-test review and the importance of recycling lessons learned for the next project.
Standard

Propeller/Propfan In-Flight Thrust Determination

2012-05-29
CURRENT
AIR4065A
AIR 4065, "Propeller/Propfan In-Flight Thrust Determination" addresses steady state propeller thrust as applied to aircraft which are usually powered by gas turbine engines. It includes theory, examples and methods which have been used. Specifically two methods are discussed, the "J" or traditional J,Cp,Ct, η method including the SBAC variation and a new method we call the "Theta" method which is dependent on knowing blade angle, power/torque and flight Mach number. Implementation guidelines are offered as well as overall approaches to flight testing. Appendices include expansions on theory and testing as well as examples.
Standard

The Measurement of Engine Thrust in an Altitude Test Facility

2015-09-14
HISTORICAL
AIR5771
This report covers engine tests performed in Altitude Test Facilities (ATFs) with the primary purpose of determining steady state thrust at simulated altitude flight conditions as part of the in-flight thrust determination process. As such it is complementary to AIR1703 and AIR5450, published by the SAE E-33 Technical Committee. The gross thrust determined using such tests may be used to generate other thrust-related parameters that are frequently applied in the assessment of propulsion system performance. For example: net thrust, specific thrust, and exhaust nozzle coefficients. The report provides a general description of ATFs including all the major features. These are: Test cell air supply system. This controls the inlet pressure and includes flow straightening, humidity and temperature conditioning. Air inlet duct and slip joint. Note that the report only covers the case where the inlet duct is connected to the engine, not free jet testing.
Standard

The Measurement of Engine Thrust in an Altitude Test Facility

2018-02-14
CURRENT
AIR5771A
This report covers engine tests performed in Altitude Test Facilities (ATFs) with the primary purpose of determining steady state thrust at simulated altitude flight conditions as part of the in-flight thrust determination process. As such it is complementary to AIR1703 and AIR5450, published by the SAE E-33 Technical Committee. The gross thrust determined using such tests may be used to generate other thrust-related parameters that are frequently applied in the assessment of propulsion system performance. For example: net thrust, specific thrust, and exhaust nozzle coefficients. The report provides a general description of ATFs including all the major features. These are: Test cell air supply system. This controls the inlet pressure and includes flow straightening, humidity and temperature conditioning. Air inlet duct and slip joint. Note that the report only covers the case where the inlet duct is connected to the engine, not free jet testing.
Standard

Estimation of Measurement Uncertainty in Engine Tests Based on NATO AGARD Uniform Engine Test Program

2012-05-29
CURRENT
AIR4979A
The primary objective of this document is to describe the systematic and random measurement uncertainties which may be expected when testing gas turbine engines in a range of different test facilities. The documentation covers a "traditional" method for estimating pretest uncertainties and a "new" method for computing and comparing posttest uncertainties. To determine these posttest uncertainties, data generated during the AGARD Uniform Engine Test Program (UETP) were analyzed and compared to the pretest estimates. The proposed procedure provides a mechanism for determining the expected accuracy of test results obtained from facilities which were not previously cross calibrated. Furthermore, the method can be used to assist in making cost-effective management decisions on the level of validation/cross calibration necessary when bringing a test facility on line.
Standard

Estimation of Measurement Uncertainty in Engine Tests Based on NATO AGARD Uniform Engine Test Program

2004-11-17
HISTORICAL
AIR4979
The primary objective of this document is to describe the systematic and random measurement uncertainties which may be expected when testing gas turbine engines in a range of different test facilities. The documentation covers a "traditional" method for estimating pretest uncertainties and a "new" method for computing and comparing posttest uncertainties. To determine these posttest uncertainties, data generated during the AGARD Uniform Engine Test Program (UETP) were analyzed and compared to the pretest estimates. The proposed procedure provides a mechanism for determining the expected accuracy of test results obtained from facilities which were not previously cross calibrated. Furthermore, the method can be used to assist in making cost-effective management decisions on the level of validation/cross calibration necessary when bringing a test facility on line.
Standard

Uncertainty of In-Flight Thrust Determination

2023-03-23
CURRENT
AIR1678B
This document defines and illustrates the process for determination of uncertainty of turbofan and turbojet engine in-flight thrust and other measured in-flight performance parameters. The reasons for requiring this information, as specified in the E-33 Charter, are: determination of high confidence aircraft drag; problem rectification if performance is low; interpolation of measured thrust and aircraft drag over a range of flight conditions by validation and development of high confidence analytical methods; establishment of a baseline for future engine modifications. This document describes systematic and random measurement uncertainties and methods for propagating the uncertainties to the more complicated parameter, in-flight thrust. Methods for combining the uncertainties to obtain given confidence levels are also addressed. Although the primary focus of the document is in-flight thrust, the statistical methods described are applicable to any measurement process.
X