Refine Your Search

Search Results

Viewing 1 to 9 of 9
Journal Article

Testing of a Plastic Melt Waste Compactor Designed for Human Space Exploration Missions

2009-07-12
2009-01-2363
Significant progress has been made at NASA Ames Research Center in the development of a heat melt compaction device called the Plastic Melt Waste Compactor (PMWC). The PMWC was designed to process wet and dry wastes generated on human space exploration missions. The wastes have a plastic content typically greater than twenty percent. The PMWC removes the water from the waste, reduces the volume, and encapsulates it by melting the plastic constituent of the waste. The PMWC is capable of large volume reductions. The final product is compacted waste disk that is easy to manage and requires minimal crew handling. This paper describes the results of tests conducted using the PMWC with a wet and dry waste composite that was representative of the waste types expected to be encountered on long duration human space exploration missions.
Technical Paper

Compaction and Drying in a Low-Volume, Deployable Commode

2007-07-09
2007-01-3264
We present a device for collecting and storing feces in microgravity that is user-friendly yet suitable for spacecraft in which cabin volume and mass are constrained. On Apollo missions, the commode function was served using disposable plastic bags, which proved time-consuming and caused odor problems. On Skylab, the space shuttle, and the International Space Station, toilets have used airflow beneath a seat to control odors and collect feces. We propose to incorporate airflow into a system of self-compacting, self-drying collection and stowage bags, providing the benefits of previous commodes while minimizing mass and volume. Each collection bag consists of an inner layer of hydrophobic membrane that is permeable to air but not liquid or solid waste, an outer layer of impermeable plastic, and a collapsible spacer separating the inner and outer layers. Filled bags are connected to space vacuum, compacting and drying their contents.
Technical Paper

Solid Waste Processing - An Essential Technology for the Early Phases of Mars Exploration and Colonization

1997-07-01
972272
Terraforming of Mars is the long-term goal of colonization of Mars. However, this process is likely to be a very slow process and conservative estimates involving a synergetic, technocentric approach suggest that it may take around 10,000 years before the planet can be parallel to that of Earth and where humans can live in open systems (Fogg, 1995). Hence, for the foreseeable future, any missions will require habitation within small confined habitats with high biomass to atmospheric mass ratios, thereby requiring that all wastes be recycled. Processing of the wastes will ensure predictability and reliability of the ecosystem and reduce resupply logistics. Solid wastes, though smaller in volume and mass than the liquid wastes, contain more than 90% of the essential elements required by humans and plants.
Technical Paper

Pyrolysis of Mixed Solid Food, Paper, and Packaging Wastes

2008-06-29
2008-01-2050
Pyrolysis is a very versatile waste processing technology which can be tailored to produce a variety of solid, liquid and/or gaseous products. The pyrolysis processing of pure and mixed solid waste streams has been under investigation for several decades for terrestrial use and a few commercial units have been built for niche applications. Pyrolysis has more recently been considered for the processing of mixed solid wastes in space. While pyrolysis units can easily handle mixed solid waste streams, the dependence of the pyrolysis product distribution on the component composition is not well known. It is often assumed that the waste components (e.g., food, paper, plastic) behave independently, but this is a generalization that can usually only be applied to the overall weight loss and not always to the yields of individual gas species.
Technical Paper

Plastic Waste Processing and Volume Reduction for Resource Recovery and Storage in Space

2003-07-07
2003-01-2369
This paper describes work that has begun at Ames Research Center on development of a heat melt compactor that can be used on near term and future missions. The heat melt compactor can handle wastes with a significant plastic composition and minimize crew interaction. The current solid waste management system employed on the International Space Station (ISS) consists of compaction, storage, and disposal. Wastes such as plastic food packaging and trash are compacted manually and wrapped in duct taped “footballs” by the astronauts. Much of the waste is simply loaded into the empty Russian Progress spacecraft that is used to bring supplies to ISS. The progress spacecraft and its contents are intentionally burned up in the earth's atmosphere during reentry. This manual method of trash management on ISS is a wasteful use of crew time and does not transition well to far term missions.
Technical Paper

Solids Waste Processing and Resource Recovery for Long-Duration Missions – A Workshop

2001-07-09
2001-01-2351
Future long-duration human space exploration missions will require increased system autonomy and reliability with fidelities beyond the present level of life support technology. Long-duration planetary missions will require Advanced Life Support (ALS) systems to provide methods for crop and food production, air and water recycling, and solid waste resource recovery. Among these principal life support functional areas, solid waste processing will need significant development. Because of this need, a solid waste processing and resource recovery (SWPRR) workshop was held in April 2000, to assess solid waste processing technologies. The purpose of the workshop was to gather data and provide input to the National Aeronautics and Space Administration (NASA) for a solid waste processing research and technology development (R&TD) strategy. This paper discusses the workshop assessment methodology and the results.
Technical Paper

Testing and Analysis of the First Plastic Melt Waste Compactor Prototype

2005-07-11
2005-01-3080
A half scale version of a device called the Plastic Melt Waste Compactor prototype is being developed at NASA Ames Research Center to deal with plastic based wastes that are expected to be encountered in future human space exploration scenarios such as Lunar or Martian Missions. The Plastic Melt Waste Compactor design was based on the types of wastes produced on the International Space Station, Space Shuttle, MIR and Skylab missions. The half scale prototype unit will lead to the development of a full scale Plastic Melt Waste Compactor prototype that is representative of flight hardware that would be used on near and far term space missions. This paper details the progress of the Plastic Melt Waste Compactor Development effort by the Solid Waste Management group at NASA Ames Research Center.
Technical Paper

An Evaluation of a Prototype Dry Pyrolysis System for Destruction of Solid Wastes

2004-07-19
2004-01-2379
Pyrolysis is a technology that can be used on future space missions to convert wastes to an inert char, water, and gases. The gases can be easily vented overboard on near term missions. For far term missions the gases could be directed to a combustor or recycled. The conversion to char and gases as well as the absence of a need for resupply materials are advantages of pyrolysis. A major disadvantage of pyrolysis is that it can produce tars that are difficult to handle and can cause plugging of the processing hardware. By controlling the heating rate of primary pyrolysis, the secondary (cracking) bed temperature, and residence time, it is possible that tar formation can be minimized for most biomass materials. This paper describes an experimental evaluation of two versions of pyrolysis reactors that were delivered to the NASA Ames Research Center (ARC) as the end products of a Phase II and a Phase III Small Business Innovation Research (SBIR) project.
Technical Paper

Development of Plastic Melt Waste Compactor for Space Missions - Experiments and Prototype Design

2004-07-19
2004-01-2378
This paper describes current work at NASA Ames Research Center on the development of a heat melt compactor that can be used on both near term and far term missions. Preliminary tests have been performed to characterize the behavior of composite wastes that are representative of the types of wastes produced on current and previous space missions such as International Space Station, Space Shuttle, MIR and Skylab. Preliminary tests were conducted to characterize the volume reduction, bonding, encapsulation and plastic extrusion of the waste composite. The preliminary tests are designed to provide the data needed to design the first prototype Plastic Melt Waste Compactor.
X