Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Development of CFRP Monocoque Front Impact Attenuator for FSAE with VaRTM

2007-10-30
2007-32-0120
The Formula SAE (FSAE) rules require mounting an impact attenuator (IA) to the front part of the formula car. The IA is necessary to take fully into account not only lighter weight of the parts but also cost effectiveness as the total cost and the workability of manufacturing have much value to win the FSAE. In this paper, three different IAs, 1) a space frame structure with steel pipes (SSF), 2) a monocoque structure with aluminum (AM) and 3) a monocoque structure with Carbon Fiber Reinforced Plastic (CFRPM), were manufactured and compared with respect to the weight and the cost effectiveness under FSAE rules. The FEM simulations for the AM were performed and the calculated results showed good agreements with the experimental ones. However, the AM could not absorb the impact energy experimentally. The CFRPM could absorb the required impact energy with lighter structure compared to other IAs. The weight was half of the experimental SSF and 1/5 of the calculated AM.
Technical Paper

Spray Characteristics of Local-Contact Microwave-Heating Injector Fueled with Ethanol

2013-10-15
2013-32-9126
A microwave-heating system is integrated in a port-injector to minimize the cold-start problems and exhaust emissions of engine. This paper report the experimental investigations of spray characteristics and numerical simulation of fuel temperature inside port-injector. Fuel flow inside port-injector is heated using microwave-heating and this system is called “local-contact microwave-heating injector” (LMI). LMI can be used to increase temperature of ethanol near boiling point (351.5K) before injected into room temperature. Injection pressure of fuel was operated constant at 0.3MPa. Characteristics of fuel spray were observed experimentally using high speed camera, CMOS camera and LDSA. Numerical simulation was conducted to verify the effect of local heating on spray distribution. 2-D geometry of injector with finer quadrilateral mesh (56,000 meshes) was solved numerically on pressure based solver in CFD simulation code.
X