Refine Your Search

Topic

Search Results

Viewing 1 to 20 of 20
Technical Paper

Research on Steering Performance of Steer-By- Wire Vehicle

2018-04-03
2018-01-0823
With the popularity of electrification and driver assistance systems on vehicle dynamics and controls, the steering performance of the vehicle put forward higher requirements. Thus, the steer-by-wire technology is becoming particularly important. Through specific control algorithm, the steer-by-wire system electronic control unit can receive signals from other sensors on the vehicle, realize the personalized vehicle dynamics control on the basis of understanding the driver’s intention, and grasp the vehicle movement state. At the same time, to make these driver assistance systems better cooperate with human drivers, reduce system frequent false warning, full consideration of mutual adaptation for the systems and the driver’s characteristics is critical. This paper focuses on the steering performance of steer-by-wire vehicle. Feature parameters are obtained from the virtual turning experiment designed on the driving simulator experimental platform.
Technical Paper

A Braking Force Distribution Strategy in Integrated Braking System Based on Wear Control and Hitch Force Control

2018-04-03
2018-01-0827
A braking force distribution strategy in integrated braking system composed of the main braking system and the auxiliary braking system based on braking pad wear control and hitch force control under non-emergency braking condition is proposed based on the Electronically Controlled Braking System (EBS) to reduce the difference in braking pad wear between different axles and to decrease hitch force between tractors and trailers. The proposed strategy distributes the braking force based on the desired braking intensity, the degree of the braking pad wear and the limits of certain braking regulations to solve the coupling problems between braking safety, economical efficiency of braking and the comfort of drivers. Computer co-simulations of the proposed strategy are performed.
Technical Paper

Study on Automated Mechanical Transmission and Method of Parameter Optimization Design for Hybrid Electric Bus

2013-11-27
2013-01-2828
The hybrid electric city bus, which consists of the electric motor and battery, is obviously different from the traditional buses. This paper focuses on optimizing the characteristics of the automatic mechanical transmission in hybrid electric city bus and does the following studies: firstly, in order to reduce the fuel consumption, the transmission ratio and some structural parameters are optimized with CRUISE software; secondly, the volume and weight of the transmission structure is reduced and optimized by numerical optimization approach, with the limitation of the structural reliability.
Technical Paper

Research on an AKF Estimator of the Gravity Centre and States of Commercial Vehicles

2013-11-27
2013-01-2818
The commercial vehicle is widely used in the overland transport. A prediction is given on the 9th annual China automotive industry forum that the number of the global commercial vehicles will reach eight million by the year of 2016. However, since the distance between its gravity centre and the ground is larger than that of the passenger vehicle, considering its comparatively short wheelbase, the rollover accident, which is fatal to the drivers and always makes enormous loss of merchandises, easily occurs in the case of commercial vehicles. As the number of the commercial vehicle is increasing fast, the accidents will occur more frequently, the losses will be increasingly enormous. To solve the problem, many researches about rollover early warning systems have been done. In most cases, it is assumed that the references of the vehicle are given.
Technical Paper

The Resistance Loading System of Electronic Control Steering System Performance Test Bench

2014-04-01
2014-01-0230
Nowadays, electric control steering system has been a main tendency. It consists of Electric Power Steering (EPS) system, Steer by Wire (SBW) system and Active Front Steering (AFS) system. EPS is more widely applied and its technology is more developed. By 2010, the cars equipped with EPS have reached almost 30%. This paper describes one integrated test bench which can test and verify electric control steering system. The main target of the paper is to design and set up a resistance loading system for the test bench referred. The paper takes EPS as a prototype to verify the designed resistance loading system. If the resistance loading system provides a precise simulated torque for the bench, the results of tests will be more approximate with vehicle tests and the acquired data will be reliable for electric control steering system's design and improvement. The linear electric cylinder applied in the loading system is used to provide simulated torque for the bench.
Technical Paper

The Regenerative Braking Control Strategy of Four-Wheel-Drive Electric Vehicle Based on Power Generation Efficiency of Motors

2013-04-08
2013-01-0412
Nowadays, the endurance mileage of electric vehicle is commonly short. For the purpose of enhancing the endurance mileage of 4WD electric vehicles, this paper proposes a new control strategy based on the generation efficiency of in-wheel motors. When the brake strength is low, the strategy defines the torque on which the motor has the highest generate efficiency as the upper limit of the braking torque of the front axle. What's more, the proportion of mechanical braking force is reduced. Because of these, the vehicle has a higher generation power. The simulation model is built up by using Matlab/Simulink and CarSim software, and the strategy is simulated under several driving cycles. The result shows that, comparing with the two traditional braking force distribution strategies, the new strategy can obviously improve the regenerative efficiency.
Technical Paper

Variable Yaw Rate Gain for Vehicle Steer-by-wire with Joystick

2013-04-08
2013-01-0413
Steering-By-Wire (SBW) system has advantages of advanced vehicle control system, which has no mechanical linkage to control the steering wheel and front wheels. It is possible to control the steering wheel actuator and front wheels actuator steering independently. The goal of this paper is to use a joystick to substitute the conventional steering wheel with typical vehicle SBW system and to study a variable steering ratio design method. A 2-DOF vehicle dynamic reference model is built and focused on the vehicle steering performance of drivers control joystick. By verifying the results with a hardware-in-the-loop simulation test bench, it shows this proposed strategy can improve vehicle maneuverability and comfort.
Technical Paper

A Model-Based Mass Estimation and Optimal Braking Force Distribution Algorithm of Tractor and Semi-Trailer Combination

2013-04-08
2013-01-0418
Taking a good longitudinal braking performance on flat and level road of tractor and semi-trailer combination as a target, in order to achieve an ideal braking force distribution among axles, while the vehicle deceleration is just depend on the driver's intention, not affected by the variation of semi-trailer mass, the paper proposes a model based vehicle mass identification and braking force distribution strategy. The strategy identifies the driver's braking intention via braking pedal, estimates semi-trailer's mass during the building process of braking pressure in brake chamber, distributes braking force among axles by using the estimated mass. And a double closed-loop regulation of the vehicle deceleration and utilization adhesion coefficient of each axle is presented, in order to eliminate the bad effect of mass estimation error, and enhance the robustness of the whole algorithm. A simulation is conducted by utilizing MATLAB/Simulink and TruckSim.
Technical Paper

A Slip-Rate-Based Braking Force Distribution Algorithm for the Electronic Braking System of Combination Vehicle

2014-09-30
2014-01-2385
The paper focus on enhancing the braking safety and improving the braking performance of the tractor/trailer vehicle. A slip-rate-based braking force distribution algorithm is proposed for the electronic braking system of tractor/trailer combination vehicle. The algorithm controls the slip-rates of the tractor's rear wheels and the semi-trailer's wheels changing with the slip-rate of tractor's front wheels, making tractor's front wheels lock up ahead of the tractor's rear wheels and the semi-trailer's wheels. The algorithm protects the combination vehicle from jackknifing and swing, guaranteeing that the combination vehicle has better driving stability and steering capability. The algorithm can be tested by co-simulation with MATLAB/Simulink and TruckSim software both on high adhesion and low adhesion roads.
Technical Paper

Variable Steering Ratio Design for Vehicle Steer-by-Wire System with Joystick

2016-04-05
2016-01-0455
Steering-by-wire(SBW) system makes the vehicle not constrained by the steering wheel control. Joystick, button and touch screen can all be used for automobile steering control. Using joystick to achieve steering operations has its unique advantages and many problems which are needed to be resolved at the same time. This paper firstly introduced the components of traditional steering wheel steer-by-wire system, then came up with the difference between joystick steer-by-wire system and traditional steer-by-wire system about transmission ratio, transmission ratio control strategy of joystick steer-by-wire system is proposed at the same time. At last, this paper studied driver’s busy degree when the vehicle running with a big turning radius at low speed and the effect of different angle transmission ratio on vehicle handing stability when the vehicle running at intermediate speed.
Technical Paper

Hydraulic Character Modeling and Vehicle Stability Control Algorithm for EHB System of Passenger Car

2016-04-05
2016-01-0454
As a new braking system, EHB can significantly improve the braking performance and vehicle handling and stability. In this paper the structure of high-speed on-off valve and the valve core principle are discussed, the paper also analysis the response of the valve core under different modulation frequency, duty cycle and the change of wheel cylinder pressure. Set a proper modulation frequency to make sure that electromagnetic valve can be worked in a greater linear range.
Technical Paper

The Brake Pads Compensation Control Algorithm for Brake Force Distribution

2014-09-30
2014-01-2287
A brake pad wear control algorithm used under non-emergency braking conditions is proposed to reduce the difference in brake pad wear between the front and rear axles caused by the difference in brakes and braking force. According to the adhesion state of the pad wear, the control algorithm adjusted the braking force distribution ratio of front and rear wheel that balanced adhesion pad wear value. Computer co-simulations of braking with Trucksim and Matlab/Simulink using vehicle models with equal brake pad wear, greater wear on the front axle and greater wear on the rear axle respectively is performed. The computation simulation results show that meet the brake force distribution system regulatory requirements and total vehicle braking force unchanged.
Technical Paper

Study on Automated Mechanical Transmission Parameters Optimization for Hybrid Electric Bus

2014-09-30
2014-01-2371
For city buses, especially hybrid electric buses, the requirements for the fuel economy and low noises are stricter, comparing with the momentum quality. Since hybrid electric buses sometimes run without the engine, the noises that the transmission makes become the major type. To get better fuel economy and lower noises, this paper focuses on optimizing the characteristics of the automatic mechanical transmission (AMT) in a hybrid electric city bus, and the studies are done as follows. Firstly, in order to reduce the fuel consumption, the transmission ratios are optimized by the co-simulation and optimization in CRUISE and MATLAB, with the limitation of the quality of driving momentum. Secondly, for the purpose of lightweight and lower transmission noise, multi-objective optimization based on reliability is applied in transmission geometric optimization design, the objective function are the smallest volume and the biggest transmission gear contact ratio of the transmission.
Technical Paper

A Feasible Driver-Vehicle Shared Steering Control Actuation Architecture Based on Differential Steering

2022-12-22
2022-01-7080
To address the current situation of the limited driver-vehicle cooperative steering actuation structure, this paper proposes a feasible driver-vehicle shared steering control actuation architecture based on the differential steering. Firstly, a shared steering execution architecture is established, which contains traditional steering system controlled by human driver and differential steering system acting as the automatic execution system. In this paper, a specific driver-vehicle shared control architecture is established with the front-wheel hub motor-based differential steering system and a single-view angle based human driver model. Then, an upper-level sliding mode controller for path tracking is developed and implemented as the automatic steering system, and the driver-vehicle shared control is achieved by the proposed non-cooperative game model.
Technical Paper

Braking Control Strategy Based on Electronically Controlled Braking System and Intelligent Network Technology

2019-11-04
2019-01-5038
In order to solve the coupling problems between braking safety, economical efficiency of braking and the comfort of drivers, a braking control strategy based on Electronically Controlled Braking System (EBS) and intelligent network technology under non-emergency braking conditions is proposed. The controller utilizes the intelligent network technology’s characteristics of the workshop communication to obtain the driving environment information of the current vehicle firstly, and then calculate the optimal braking deceleration of the vehicle based on optimal control method. The strategy will distribute the braking force according to the ideal braking force distribution condition based on the EBS according to the braking deceleration; the braking force will be converted to braking pressure according to brake characteristics. Computer co-simulations of the proposed strategy are performed, the strategy is verified under different initial speeds.
Technical Paper

Research on the Control Strategy of Trailer Tracking Tractor for Articulated Heavy Vehicles

2019-11-04
2019-01-5054
The purpose of this paper is to improve the path-following capability and high-speed lateral stability of the articulated heavy vehicles (AHVs). The six-axle heavy articulated vehicle was taken as the research object, in order to simplify the control design, the three-axle trailer of the articulated vehicles was simplified to a single-axle trailer. The Newton's second law was applied to the tractor unit and the single-axle trailer unit respectively, a three-degree-of-freedom vehicle yaw plane model was established, and its state space equation was derived. The trailer steering controller was designed by linear quadratic regulator (LQR) technique. At the same time, the optimal index function was determined by combining the vehicle state variables, and the optimal control input was obtained by using the algebraic Riccati equation.
Technical Paper

Research on Control Algorithm of Active Steering Control Based on the Driver Intention

2019-11-04
2019-01-5064
Active steering technology can improve the operability of the driver by the involvement to the steering system. Driver is the major controller of the vehicle Therefore, the involvement of advanced technologies including the active steering technology shouldn’t interfere with the intention of the driver, and the driver should still have great control of the vehicle. The aim of this paper is to solve the problem of the driver’s control when the active steering system works to improve the flexibility of the low speed and the stability of the high speed, and the active steering model based on the driver’s steering intention is established. Through the CarSim simulation software, this paper adopts 9 parameters related to the vehicle steering of the DLC (Double Line Change). And PCA (Principal Component Analysis) algorithm, a tool of statistical analysis, is applied to select 4 parameters which can stand for the DLC from the 9 parameters, which makes the data processing easier.
Technical Paper

Road Feel Modeling and Return Control Strategy for Steer-by-Wire Systems

2024-04-09
2024-01-2316
The steer-by-wire (SBW) system, an integral component of the drive-by-wire chassis responsible for controlling the lateral motion of a vehicle, plays a pivotal role in enhancing vehicle safety. However, it poses a unique challenge concerning steering wheel return control, primarily due to its fundamental characteristic of severing the mechanical connection between the steering wheel and the turning wheel. This disconnect results in the inability to directly transmit the self-aligning torque to the steering wheel, giving rise to complications in ensuring a seamless return process. In order to realize precise control of steering wheel return, solving the problem of insufficient low-speed return and high-speed return overshoot of the steering wheel of the SBW system, this paper proposes a steering wheel active return control strategy for SBW system based on the backstepping control method.
Technical Paper

Recursive Least Square Method with Multiple Forgot Factor for Mass Estimation of Heavy Commercial Vehicle

2024-04-09
2024-01-2762
Heavy commercial vehicles have large variations in load and high centroid positions, so it is particularly important to obtain timely and accurate load information during driving. If the load information can be accurately obtained and the braking force of each axle can be distributed on this basis, the braking performance and safety of the entire vehicle can be improved. Heavy commercial vehicle load information is different from passenger vehicles, so it is particularly important to study commercial vehicles engaged in freight and passenger transportation. Presently, numerous research endeavors focus on evaluating the quality of passenger vehicles. However, heavy commercial vehicles exhibit notable distinctions compared to their passenger counterparts. Due to substantial variations in vehicle mass pre and post-loading, coupled with notable suspension deformations, significant changes are observed.
Technical Paper

Coordinated Control of Trajectory Tracking and Yaw Stability of a Hub-Motor-Driven Vehicle based on Four-Wheel-Steering

2024-04-09
2024-01-2767
In order to improve the trajectory tracking accuracy and yaw stability of vehicles under extreme conditions such as high speed and low adhesion, a coordinated control method of trajectory tracking and yaw stability is proposed based on four-wheel-independent-driving vehicles with four-wheel-steering. The hierarchical structure includes the trajectory tracking control layer, the lateral stability control decision layer, and the four-wheel angle and torque distribution layer. Firstly, the upper layer establishes a three-degree-of-freedom vehicle dynamics model as the controller prediction model, the front wheel steering controller is designed to realize the lateral path tracking based on adaptive model predictive control algorithm and the longitudinal speed controller is designed to realize the longitudinal speed tracking based on PID control algorithm.
X