Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Material Systems for Cylinder Bore Applications - Plasma Spray Technology

1997-02-24
970023
The development, evaluation, and selection of Plasma spray powder material for the coating of aluminum-alloy engine cylinder block bores was conducted to yield a bore system which provides numerous benefits relative to the present cast iron sleeve system. These include: a reduction in ring/bore wear, friction, and in engine oil consumption as well as a benefit in reduced corrosion. A reduction in engine weight, overall costs, and improvements in machining and honing operations are shown. Alternate thermal spray processes are also described in this investigation. Test evaluation leads to the selection of two plasma powder material spray systems. One system emphasizes low cost relative to the present system. The second system provides significant reduction in friction and ring/bore wear through the introduction of solid lubricant in the material composition.
Technical Paper

Friction and Wear Characteristics of Micro-Arc Oxidation Coating for Light Weight, Wear Resistant, Powertrain Component Application

1997-02-24
970022
An extremely tough alumina based ceramic coating produced by a modified anodizing process developed at Moscow Aviation Institute has been evaluated for light weight, wear resistant component applications in automotive powertrain. The process details and test results from comparative evaluation of friction and wear properties for cylinder bore application, referenced to cast iron baseline, are presented and discussed.
Technical Paper

Advanced Techniques for Thermal and Catalytic Diesel Particulate Trap Regeneration

1985-02-01
850014
Advanced techniques for regenerating diesel particulate traps are described. A bypassable trap system minimized regeneration thermal energy requirements. Thermal regeneration systems with burners or electric resistance heaters were evaluated. Regeneration emissions and fuel consumption penalties were measured. Catalytic fuel additives consisting of octoate based compounds of copper and nickel, and copper and cerium provided reductions of up to 410°F in trap regeneration temperature. Durability tests confirmed frequent self regeneration with fuel additives. Over 95% of the fuel additive was collected by the trap. The useful life of the trap having a volume equal to engine displacement was estimated to be 30,000 miles.
X