Refine Your Search

Topic

Search Results

Journal Article

The Performance Characteristics of an Production Oriented Air Hybrid Powertrain

2010-04-12
2010-01-0821
In a previous paper [ 1 ], the authors have proposed a cost effective air hybrid concept based on a proprietary intake system and cam profile switching (CPS) system [ 2 ]. It was shown through engine simulations that the pneumatic hybrid operation could be achieved with about 15% regenerative efficiency. The proposed air hybrid operation can be achieved with proven technologies and engine components and hence it represents a cost-effective, reliable and quick deployable solution for low carbon vehicles. In this work, a four-cylinder 2 litre diesel engine has been modelled to operate on refined air hybrid engine configurations and the braking and motoring performance of each configuration have been studied. Both air hybrid systems can be constructed with production technologies and incur minimum changes to the existing engine design.
Journal Article

The Effects of Charge Homogeneity and Repeatability on Particulates Using the PLIF Technique in an Optical DISI Engine

2014-04-01
2014-01-1207
The work was concerned with visualisation of the charge homogeneity and cyclic variations within the planar fuel field near the spark plug in an optical spark ignition engine fitted with an outwardly opening central direct fuel injector. Specifically, the project examined the effects of fuel type and injection settings, with the overall view to understanding some of the key mechanisms previously identified as leading to particulate formation in such engines. The three fuels studied included a baseline iso-octane, which was directly compared to two gasoline fuels containing 10% and 85% volume of ethanol respectively. The engine was a bespoke single cylinder with Bowditch style optical access through a flat piston crown. Charge stratification was studied over a wide spectrum of injection timings using the Planar Laser Induced Fluorescence (PLIF) technique, with additional variation in charge temperature due to injection also estimated when viable using a two-line PLIF approach.
Journal Article

Investigation of Early and Late Intake Valve Closure Strategies for Load Control in a Spark Ignition Ethanol Engine

2017-03-28
2017-01-0643
The more strict CO2 emission legislation for internal combustion engines demands higher spark ignition (SI)engine efficiencies. The use of renewable fuels, such as bioethanol, may play a vital role to reduce not only CO2 emissions but also petroleum dependency. An option to increase SI four stroke engine efficiency is to use the so called over-expanded cycle concepts by variation of the valve events. The use of an early or late intake valve closure reduces pumping losses (the main cause of the low part load efficiency in SI engines) but decreases the effective compression ratio. The higher expansion to compression ratio leads to better use of the produced work and also increases engine efficiency. This paper investigates the effects of early and late intake valve closure strategies in the gas exchange process, combustion, emissions and engine efficiency at unthrottled stoichiometric operation.
Technical Paper

Numerical Investigation of Diesel-Spray-Orientated Piston Bowls on Natural Gas and Diesel Dual Fuel Combustion Engine

2020-04-14
2020-01-0311
Low combustion efficiency and high hydrocarbon emissions at low loads are key issues of natural gas and diesel (NG-diesel) dual fuel engines. For better engine performance, two diesel-spray-orientated (DSO) bowls were developed based on the existing diesel injector of a heavy-duty diesel engine with the purpose of placing more combustible natural gas/air mixture around the diesel spray jets. A protrusion-ring was designed at the rim of the piston bowl to enhance the in-cylinder flame propagation. Numerical simulations were conducted for a whole engine cycle at engine speed of 1200 r/min and indicated mean effective pressure (IMEP) of 0.6 MPa. Extended coherent flame model 3 zones (ECFM-3Z) combustion model with built-in soot emissions model was employed. Simulation results of the original piston bowl agreed well with the experimental data, including in-cylinder pressure and heat released rate (HRR), as well as soot and methane emissions.
Technical Paper

The effective use of ethanol for greenhouse gas emissions reduction in a diesel engine

2020-01-13
2019-36-0157
Regulations have been established for the monitoring and reporting of greenhouse gas (GHG) emissions and fuel consumption from the transport sector. Low carbon fuels combined with new powertrain technologies have the potential to provide significant reductions in GHG emissions while decreasing the dependence on fossil fuel. In this study, a lean-burn ethanol-diesel dual-fuel combustion strategy has been used as means to improve upon the efficiency and emissions of a conventional diesel engine. Experiments have been performed on a 2.0 dm3 single cylinder heavy-duty engine equipped with port fuel injection of ethanol and a high-pressure common rail diesel injection system. Exhaust emissions and fuel consumption have been measured at a constant engine speed of 1200 rpm and various steady-state loads between 0.3 and 2.4 MPa net indicated mean effective pressure (IMEP).
Technical Paper

CAI Combustion with Methanol and Ethanol in an Air-Assisted Direct Injection SI Engine

2008-06-23
2008-01-1673
CAI combustion has the potential to be the most clean combustion technology in internal combustion engines and is being intensively researched. Following the previous research on CAI combustion of gasoline fuel, systematic investigation is being carried out on the application of bio-fuels in CAI combustion. As part of an on-going research project, CAI combustion of methanol and ethanol was studied on a single-cylinder direct gasoline engine with an air-assisted injector. The CAI combustion was achieved by trapping part of burnt gas within the cylinder through using short-duration camshafts and early closure of the exhaust valves. During the experiment the engine speed was varied from 1200rpm to 2100rpm and the air/fuel ratio was altered from the stoichiometry to the misfire limit. Their combustion characteristics were obtained by analysing cylinder pressure trace.
Technical Paper

In-cylinder Studies of Fuel Injection and Combustion from a Narrow Cone Fuel Injector in a High Speed Single Cylinder Optical Engine

2008-06-23
2008-01-1789
Over the last decade, the high speed direct injection (HSDI) diesel engine has made dramatic progress in both its performance and market share in the light duty vehicle market. However, with ever more stringent emission legislation to be introduced over coming years, the simultaneous reduction of NOx and Particulate Matter (PM) from the HSDI diesel engine is being intensively researched. As part of a European Union (EU) NICE integrated project, research has been carried out to investigate the fuel injection and combustion from a narrow cone fuel injector in a high speed direct injection single cylinder engine with optical access utilising a multiple injection strategy and various alternate fuels. The fuel injection process was visualised using a high speed imaging system comprising a copper vapour laser and a high speed video camera. The auto-ignition and combustion process was analysed through the chemiluminescence images of CHO and OH using an intensified CCD camera.
Technical Paper

Experimental Investigation of the Effects of Combined Hydrogen and Diesel Combustion on the Emissions of a HSDI Diesel Engine

2008-06-23
2008-01-1787
The effects of load, speed, exhaust gas recirculation (EGR) level and hydrogen addition level on the emissions from a diesel engine have been investigated. The experiments were performed on a 2.0 litre, 4 cylinder, direct injection engine with a high pressure common-rail injection system. Injection timing was varied between 14° BTDC and TDC and injection pressures were varied from 800 bar to 1400 bar to find a suitable base point. EGR levels were then varied from 0% to 40%. Hydrogen induction was varied between 0 and 6% vol. of the inlet charge. In the case of using hydrogen and EGR, the hydrogen replaced air. The load was varied from 0 to 5.4 bar BMEP at two engine speeds, 1500 rpm and 2500 rpm. For this investigation the carbon monoxide (CO), total unburnt hydrocarbons (THC), nitrogen oxides (NOx) and the filter smoke number (FSN) were all measured.
Technical Paper

Combustion Characteristics of CAI Combustion with Alcohol Fuels

2010-04-12
2010-01-0843
Due to its potential for simultaneous improvement in fuel consumption and exhaust emissions, controlled autoignition (CAI) combustion has been subject to continuous research in the last several years. At the same time, there has been a lot of interest in the use of alternative fuels in order to reduce reliance on conventional fossil fuels. Therefore, this experimental study has been carried out to investigate the effect of alcohol fuels on the CAI combustion process and on the resulting engine performance. The experimental work was conducted on an optical single cylinder engine with an air-assisted injector. To achieve controlled autoignition, residual gas was trapped in the cylinder by using negative valve overlap and an intake air heater was used to ensure stable CAI combustion in the optical engine. Methanol, ethanol and blended fuels were tested and compared with the results of gasoline.
Technical Paper

Diesel Soot Oxidation under Controlled Conditions

2001-09-24
2001-01-3673
A quantitative relationship between diesel soot oxidation rate and oxidation temperature and oxygen partial pressure was investigated by burning the diesel exhaust soot particles in a controlled flat flame supplied with methane/air/oxygen/nitrogen mixtures. The oxidation temperature and the oxygen partial pressure were controlled in the ranges of 1530 to 1820 K and 0.01 to 0.05 atm (1atm = 1.01325 bar) respectively. Soot particle size distribution measurements were achieved with transmission electron microscopy (TEM) for particle samples that were collected on copper grids at different positions along the flame centerline. Oxidation periods were determined by means of laser Doppler anemometry (LDA). The experimental results showed that the experimental oxidation rates fall between the values predicted by the Nagle and Strickland-Constable formula and those by the Lee formula.
Technical Paper

Dilution Effects on the Controlled Auto-Ignition (CAI) Combustion of Hydrocarbon and Alcohol Fuels

2001-09-24
2001-01-3606
This paper presents results from an experimental programme researching the in-cylinder conditions necessary to obtain homogenous CAI (or HCCI) combustion in a 4-stroke engine. The fuels under investigation include three blends of Unleaded Gasoline, a 95 RON Primary Reference Fuel, Methanol, and Ethanol. This work concentrates on establishing the CAI operating range with regard to Air/Fuel ratio and Exhaust Gas Re-circulation and their effect on the ignition timing, combustion rate and variability, Indicated thermal efficiency, and engine-out emissions such as NOx. Detailed maps are presented, defining how each of the measured variables changes over the entire CAI region. Results indicate that the alcohols have significantly higher tolerance to dilution than the hydrocarbon fuels tested. Also, variations in Gasoline blend have little effect on any of the combustion parameters measured.
Technical Paper

Investigation of EGR and Miller Cycle for NOx Emissions and Exhaust Temperature Control of a Heavy-Duty Diesel Engine

2017-10-08
2017-01-2227
In order to meet increasingly stringent emissions standards and lower the fuel consumption of heavy-duty (HD) vehicles, significant efforts have been made to develop high efficiency and clean diesel engines and aftertreatment systems. However, a trade-off between the actual engine efficiency and nitrogen oxides (NOx) emission remains to minimize the operational costs. In addition, the conversion efficiency of the diesel aftertreatment system decreases rapidly with lower exhaust gas temperatures (EGT), which occurs at low load operations. Thus, it is necessary to investigate the optimum combustion and engine control strategies that can lower the vehicle’s running costs by maintaining low engine-out NOx emissions while increasing the conversion efficiency of the NOx aftertreament system through higher EGTs.
Technical Paper

Characterization of Low Load Ethanol Dual-Fuel Combustion using Single and Split Diesel Injections on a Heavy-Duty Engine

2016-04-05
2016-01-0778
The use of two different fuels to control the in-cylinder charge reactivity of compression ignition engines has been shown as an effective way to achieve low levels of nitrogen oxides (NOx) and soot emissions. The port fuel injection of ethanol on a common rail, direct injected diesel engine increases this reactivity gradient. The objective of this study is to experimentally characterize the controllability, performance, and emissions of ethanol-diesel dual-fuel combustion in a single cylinder heavy-duty engine. Three different diesel injection strategies were investigated: a late split, an early split, and an early single injection. The experiments were performed at low load, where the fuel conversion efficiency is typically reduced due to incomplete combustion. Ethanol substitution ratios varied from 44-80% on an energy input basis.
Technical Paper

Characterization and Potential of Premixed Dual-Fuel Combustion in a Heavy Duty Natural Gas/Diesel Engine

2016-04-05
2016-01-0790
Natural Gas (NG) is currently a cost effective substitute for diesel fuel in the Heavy-Duty (HD) diesel transportation sector. Dual-Fuel engines substitute NG in place of diesel for decreased NOx and soot emissions, but suffer from high engine-out methane (CH4) emissions. Premixed Dual-Fuel Combustion (PDFC) is one method of decreasing methane emissions and simultaneously improving engine efficiency while maintaining low NOx and soot levels. PDFC utilizes an early diesel injection to adjust the flammability of the premixed charge, promoting more uniform burning of methane. Engine experiments were carried out using a NG and diesel HD single cylinder research engine. Key speeds and loads were explored in order to determine where PDFC is effective at reducing engine-out methane emissions over Conventional Dual-Fuel which uses a single diesel injection for ignition.
Technical Paper

Combustion Characteristics and Exhaust Emissions of a Direct Injection SI Engine with Pure Ethanol and Methanol in Comparison to Gasoline

2022-08-30
2022-01-1089
The automobile industry is under intense pressure to reduce carbon dioxide (CO2) emissions of vehicles. There is also increasing pressure to reduce the other tail-pipe emissions from vehicles to combat air pollution. Electric powertrains offer great potential for eliminating tailpipe CO2 and all other tailpipe emissions. However, current battery technology and recharging infrastructure still present limitations for some applications, where a continuous high-power demand is required. Furthermore, not all markets have the infrastructure to support a sizeable electric fleet and until the grid energy generation mix is of a sufficiently low carbon intensity, then significant vehicle life-cycle CO2 savings could not be realized by the Battery Electric Vehicles. This investigation examines the effects of combustion, efficiencies, and emissions of two alcohol fuels that could help to significantly reduce CO2 in both tailpipe and the whole life cycle.
Technical Paper

2-Stroke CAI Operation on a Poppet Valve DI Engine Fuelled with Gasoline and its Blends with Ethanol

2013-04-08
2013-01-1674
Controlled Auto Ignition (CAI), also known as Homogeneous Charge Compression Ignition (HCCI), is one of the most promising combustion technologies to reduce the fuel consumption and NOx emissions. Currently, CAI combustion is constrained at part load operation conditions because of misfire at low load and knocking combustion at high load, and the lack of effective means to control the combustion process. Extending its operating range including high load boundary towards full load and low load boundary towards idle in order to allow the CAI engine to meet the demand of whole vehicle driving cycles, has become one of the key issues facing the industrialisation of CAI/HCCI technology. Furthermore, this combustion mode should be compatible with different fuels, and can switch back to conventional spark ignition operation when necessary. In this paper, the CAI operation is demonstrated on a 2-stroke gasoline direct injection (GDI) engine equipped with a poppet valve train.
Technical Paper

Study of Flame Speed and Knocking Combustion of Gasoline, Ethanol and Hydrous Ethanol (10% Water) at Different Air/Fuel Ratios with Port-Fuel Injection

2018-04-03
2018-01-0655
In this paper, an experimental study was performed to investigate characteristics of flame propagation and knocking combustion of hydrous (10% water content) and anhydrous ethanol at different air/fuel ratios in comparison to RON95 gasoline. Experiments were conducted in a full bore overhead optical access single cylinder port-fuel injection spark-ignition engine. High speed images of total chemiluminescence and OH* emission was recorded together with the in-cylinder pressure, from which the heat release data were derived. The results show that under the stoichiometric condition anhydrous ethanol and wet ethanol with 10% water (E90W10) generated higher IMEP with at an ignition timing slightly retarded from MBT than the gasoline fuel for a fixed throttle position. Under rich and stoichiometric conditions, the knock limited spark timing occurred at 35 CA BTDC whereas both ethanol and E90W10 were free from knocking combustion at the same operating condition.
Technical Paper

Comparison of HCCI Combustion Respectively Fueled with Gasoline, Ethanol and Methanol through the Trapped Residual Gas Strategy

2006-04-03
2006-01-0635
In this paper, HCCI combustion characteristics of three typical high octane number fuels, gasoline, ethanol and methanol, are compared in a Ricardo single cylinder port injection engine with compression ratio of 10.5. In order to trap enough high temperature residual gas to heat intake mixture charge for stable HCCI combustion, camshafts of the experimental engine are replaced by a set of special camshafts with low valve lift and short cam duration. The three fuels are injected into the intake port respectively in different mixture volume percentages, which are E0 (100% gasoline), E50 (50% gasoline, 50% ethanol), E100 (100% ethanol), M50 (50% gasoline, 50% methanol) and M100 (100% methanol). This work concentrates on the combustion and emission characteristics and the available HCCI operation range of these fuels. What's more, the detailed comparison of in-cylinder temperature, ignition timing and other parameters has been carried out.
Technical Paper

Control of CAI Combustion Through Injection Timing in a GDI Engine With an Air- Assisted Injector

2005-04-11
2005-01-0134
Controlled auto Ignition (CAI) combustion has great potential for reducing both NOx emissions and fuel consumption in IC engines and the application of direct injection technology to the CAI engine adds another dimension of control to the combustion process. In this work an air-assisted injection system was applied to an engine that used residual gas to initiate and control CAI combustion. Injections were performed at Exhaust valve closure (EVC), intake valve opening (IVO) and BDC of the intake/compression stroke and the effects on combustion phasing (i.e. ignition timing and burn duration), engine output, fuel consumption and exhaust emissions analyzed. Injection at EVC gave the best results in terms of engine output, operating range and combustion stability. Injection at IVO generally resulted in the lowest fuel consumption. It was found that injection timing is an effective means of controlling combustion phasing.
Technical Paper

The Combustion and Emission Characteristics of Ethanol on a Port Fuel Injection HCCI Engine

2006-04-03
2006-01-0631
With the application of valve timing strategy to inlet and exhaust valves, Homogeneous Charge Compression Ignition (HCCI) combustion was achieved by varying the amount of trapped residuals through negative valve overlap on a Ricardo Hydra four-stroke port fuel injection engine fueled with ethanol. The effect of ethanol on HCCI combustion and emission characteristics at different air-fuel ratios, speeds and valve timings was investigated. The results indicate that HCCI ethanol combustion can be achieved through changing inlet and exhaust valve timings. HCCI ethanol combustion range can be expanded to high speeds and lean burn mixture. Meanwhile, the factors influencing ignition timing and combustion duration are valve timing, lambda and speeds. Moreover, NOx emissions are extremely low under HCCI combustion. The emissions-speed and emissions-lambda relationships are obtained and analyzed.
X