Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Uncertainty Assessment in Restraint System Optimization for Occupants of Tactical Vehicles

2016-04-05
2016-01-0316
We have recently obtained experimental data and used them to develop computational models to quantify occupant impact responses and injury risks for military vehicles during frontal crashes. The number of experimental tests and model runs are however, relatively small due to their high cost. While this is true across the auto industry, it is particularly critical for the Army and other government agencies operating under tight budget constraints. In this study we investigate through statistical simulations how the injury risk varies if a large number of experimental tests were conducted. We show that the injury risk distribution is skewed to the right implying that, although most physical tests result in a small injury risk, there are occasional physical tests for which the injury risk is extremely large. We compute the probabilities of such events and use them to identify optimum design conditions to minimize such probabilities.
Technical Paper

Hybrid III Sternal Deflection Associated with Thoracic Injury Severities of Occupants Restrained with Force-Limiting Shoulder Belts

1991-02-01
910812
A relationship between the risk of significant thoracic injury (AIS ≥ 3) and Hybrid III dummy sternal deflection for shoulder belt loading is developed. This relationship is based on an analysis of the Association Peugeot-Renault accident data of 386 occupants who were restrained by three-point belt systems that used a shoulder belt with a force-limiting element. For 342 of these occupants, the magnitude of the shoulder belt force could be estimated with various degrees of certainty from the amount of force-limiting band ripping. Hyge sled tests were conducted with a Hybrid III dummy to reproduce the various degrees of band tearing. The resulting Hybrid III sternal deflections were correlated to the frequencies of AIS ≥ 3 thoracic injury observed for similar band tearing in the field accident data. This analysis indicates that for shoulder belt loading a Hybrid III sternal deflection of 50 mm corresponds to a 40 to 50% risk of an AIS ≥ 3 thoracic injury.
Technical Paper

Thoracic Injury Assessment of Belt Restraint Systems Based on Hybrid III Chest Compression

1991-10-01
912895
Measurement of chest compression is vital to properly assessing injury risk for restraint systems. It directly relates chest loading to the risk of serious or fatal compression injury for the vital organs protected by the rib cage. Other measures of loading such as spinal acceleration or total restraint load do not separate how much of the force is applied to the rib cage, shoulders, or lumbar and cervical spines. Hybrid III chest compression is biofidelic for blunt impact of the sternum, but is “stiff” for belt loading. In this study, an analysis was conducted of two published crash reconstruction studies involving belted occupants. This provides a basis for comparing occupant injury risks with Hybrid III chest compression in similar exposures. Results from both data sources were similar and indicate that belt loading resulting in 40 mm Hybrid III chest compression represents a 20-25% risk of an AIS≥3 thoracic injury.
Technical Paper

Comparison of the THOR and Hybrid III Lower Extremities in Laboratory Testing

2007-04-16
2007-01-1168
A comparison of the 50th percentile male THOR-LX and Hybrid III 50th percentile male dummy lower leg was conducted via component and full scale barrier testing. In the component tests, isolated THOR-LX and Hybrid III lower legs were impacted in two different test set-ups where the tibia was impacted at three different impact points. The foot without a shoe was impacted in two different test set-ups at six different impact points. A shoe impact study was also conducted to determine the effect of a shoe on the results and to determine how many impacts a shoe can withstand at each point before properties of the shoe begin to change. For these tests, the THOR-LX and Hybrid III lower legs were repeatedly impacted at four different points on the foot with a shoe. For the full scale barrier testing, the THOR-LX or Hybrid III lower legs were attached to a belted Hybrid III 50th percentile male dummy. The dummy was positioned in a compact car for each test.
Technical Paper

SID-IIs Beta+-Prototype Dummy Biomechanical Responses

1998-11-02
983151
This paper presents the results of biomechanical testing of the SID-IIs beta+-prototype dummy by the Occupant Safety Research Partnership. The purpose of this testing was to evaluate the dummy against its previously established biomechanical response corridors for its critical body regions. The response corridors were scaled from the 50th percentile adult male corridors defined in International Standards Organization Technical Report 9790 to corridors for a 5th percentile adult female, using established International Standards Organization procedures. Tests were performed for the head, neck, shoulder, thorax, abdomen and pelvis regions of the dummy. Testing included drop tests, pendulum impacts and sled tests. The biofidelity of the SID-IIs beta+-prototype was calculated using a weighted biomechanical test response procedure developed by the International Standards Organization.
Technical Paper

DESIGN AND EVALUATION OF THE WORLDSID PROTOTYPE DUMMY

2001-06-04
2001-06-0046
The WorldSID is a new, advanced Worldwide Side Impact Dummy that has the anthropometry of a mid-sized adult male. It has a mass of 77.3 kg, a standing height of 1753 mm and a seated height of 911 mm. Almost every body region is a new, innovative design, setting the WorldSID apart from all existing side impact dummies. It incorporates over 200 available data channels, in-dummy wiring, and an in-dummy data acquisition system (DAS). The dummy is designed to be used for research and future harmonized side impact test procedures as defined by the International Harmonized Research Activities (IHRA) and other organizations. It is expected to have a biofidelity classification of “good” to “excellent” using the International Organization for Standardization (ISO) dummy classification scale. The WorldSID will be the basis for the future development of a side impact dummy family.
Technical Paper

Development of A New Dynamic Rollover Test Methodology for Heavy Vehicles

2017-03-28
2017-01-1457
Among all the vehicle rollover test procedures, the SAE J2114 dolly rollover test is the most widely used. However, it requires the test vehicle to be seated on a dolly with a 23° initial angle, which makes it difficult to test a vehicle over 5,000 kg without a dolly design change, and repeatability is often a concern. In the current study, we developed and implemented a new dynamic rollover test methodology that can be used for evaluating crashworthiness and occupant protection without requiring an initial vehicle angle. To do that, a custom cart was designed to carry the test vehicle laterally down a track. The cart incorporates two ramps under the testing vehicle’s trailing-side tires. In a test, the cart with the vehicle travels at the desired test speed and is stopped by a track-mounted curb.
Technical Paper

Optimizing Occupant Restraint Systems for Tactical Vehicles in Frontal Crashes

2018-04-03
2018-01-0621
The objective of this study was to optimize the occupant restraint systems for a light tactical vehicle in frontal crashes. A combination of sled testing and computational modeling were performed to find the optimal seatbelt and airbag designs for protecting occupants represented by three size of ATDs and two military gear configurations. This study started with 20 sled frontal crash tests to setup the baseline performance of existing seatbelts, which have been presented previously; followed by parametric computational simulations to find the best combinations of seatbelt and airbag designs for different sizes of ATDs and military gear configurations involving both driver and passengers. Then 12 sled tests were conducted with the simulation-recommended restraint designs. The test results were further used to validate the models. Another series of computational simulations and 4 sled tests were performed to fine-tune the optimal restraint design solutions.
Technical Paper

Brain Injury Risk Assessment of Frontal Crash Test Results

1994-03-01
941056
An objective, biomechanically based assessment is made of the risks of life-threatening brain injury of frontal crash test results. Published 15 ms HIC values for driver and right front passenger dummies of frontal barrier crash tests conducted by Transport Canada and NHTSA are analyzed using the brain injury risk curve of Prasad and Mertz. Ninety-four percent of the occupants involved in the 30 mph, frontal barrier compliance tests had risks of life-threatening brain injury less than 5 percent. Only 3 percent had risks greater than 16 percent which corresponds to 15 ms HIC > 1000. For belt restrained occupants without head contact with the interior, the risks of life-threatening brain injury were less than 2 percent. In contrast, for the more severe NCAP test condition, 27 percent of the drivers and 21 percent of the passengers had life-threatening brain injury risks greater than 16 percent.
Technical Paper

The Effect of Limiting Shoulder Belt Load with Air Bag Restraint

1995-02-01
950886
The dilemma of using a shoulder belt force limiter with a 3-point belt system is selecting a limit load that will balance the reduced risk of significant thoracic injury due to the shoulder belt loading of the chest against the increased risk of significant head injury due to the greater upper torso motion allowed by the shoulder belt load limiter. However, with the use of air bags, this dilemma is more manageable since it only occurs for non-deploy accidents where the risk of significant head injury is low even for the unbelted occupant. A study was done using a validated occupant dynamics model of the Hybrid III dummy to investigate the effects that a prescribed set of shoulder belt force limits had on head and thoracic responses for 48 and 56 km/h barrier simulations with driver air bag deployment and for threshold crash severity simulations with no air bag deployment.
Technical Paper

Technical Specifications of the SID-IIs Dummy

1995-11-01
952735
The SID-IIs is a small [s], second-generation [II] Side Impact Dummy [SID] which has the anthropometry of a 5th percentile adult female. It has a mass of 43.5 kg, a seated height of 790 mm, and over 100 available data channels. Based on the height and mass, this is equivalent to an average 12-13 year old adolescent. The state-of-the-art SID-IIs has special application in evaluating the performance of side impact airbags. The dummy has undergone prototype testing and will shortly be available for worldwide evaluation. This paper describes the technical details of the dummy, its biomechanical design targets, how well it met those targets, its validation requirements, and its instrumentation. The dummy is the product of a joint development agreement between the Occupant Safety Research Partnership (OSRP) of USCAR and First Technology Safety Systems.
Technical Paper

COMPARISON OF THE PRE-PROTOTYPE NHTSA ADVANCED DUMMY TO THE HYBRID III

1997-02-24
971141
A comparison of the NHTSA advanced dummy and the Hybrid III is presented in this paper based on their performance in twenty four frontal impact sled tests. Various time histories pertaining to accelerations, angular velocities, deflections and forces have been compared between the two dummies in light of their design differences. This has lead to some understanding about the differences and similarities between the NHTSA advanced dummy and the Hybrid III. In general, the chest as well as the head motion in the NHTSA advanced dummy are greater. The lumbar moments in the NHTSA advanced dummy are lower than that in the Hybrid III. The upper and lower spine segments in the NHTSA advanced dummy, generally rotate more than the spine of the Hybrid III.
Technical Paper

Thoracic Tolerance to Whole-Body Deceleration

1971-02-01
710852
A professional high diver, instrumented with accelerometers, performed sixteen dives from heights between 27-57 ft. For each dive, he executed a 3/4 turn and landed supine on a 3-ft deep mattress which consisted of pieces of low-density urethane foam encased in a nylon cover. Using FM telemetry, sagittal plane decelerations were recorded for a point either on the sternum or the forehead. Impact velocities and corresponding stopping distances for the thorax and the head were calculated from high-speed movies of the dives. For a 57-ft dive, the impact velocity of the thorax was 41 mph with a corresponding stopping distance of 34.6 in. The peak resultant deceleration of the thorax was 49.2 g with a pulse duration of 100 ms. The maximum rate of change of the deceleration of the thorax was 5900 g/s. No discomfort was experienced as a result of this impact. The maximum forehead deceleration occurred during a 47.0-ft drop and exceeded 56 g with a Gadd Severity Index greater than 465.
Technical Paper

Prediction of Thoracic Injury from Dummy Responses

1975-02-01
751151
Currently used criteria based on functions of spinal acceleration obtained from crash test dummies are shown to be invalid indicators of chest injuries in blunt frontal impacts. Cadaver impact data are analyzed; and injury is found to be a statistically significant function of chest deflection, chest depth, and cadaver age at death. Based on the resulting regression equations, injury-limiting chest deflections are recommended for various size test dummies. The recommendations apply only to test dummies that have significant thoracic biofidelity for blunt frontal impact. They are valid for environments which include signigicant blunt frontal impact. Their extension to other environments has not been validated.
Technical Paper

The Highway Safety Research Institute Dummy Compared with General Motors Biofidelity Recommendations and the Hybrid II Dummy

1974-02-01
740588
Two Highway Safety Research Institute (HSRI) dummies were tested and evaluated. Based on the analysis given, the HSI dummy should not be used for vehicle qualification testing. However, many of its components offer viable alternatives for future dummy development. The dummy was found to have inadequate biomechanical fidelity in the head, neck, and chest, although its characteristics were very promising and, as a whole, biomechanically superior to the Hybrid II. Its repeatability and reproducibility in dynamic component tests were better than the Hybrid II dummy. In particular, the HSRI friction joints were outstanding in repeatability and had a significant advantage in usability in that they do not require resetting between tests. In three-point harness and ACRS systems tests, the values of injury criteria produced by the HSRI dummy were generally lower than those obtained with the Hybrid II, especially the femur loads in the ACRS tests.
Technical Paper

Forces on the Human Body in Simulated Crashes

1965-10-20
650961
Details of a new crash simulator and preliminary results from a series of cadaver knee impact experiments were presented at the Eighth Stapp Conference. During the past year additional data concerning injury to the knee-thigh-hip complex have been obtained, and the studies have been extended to consider impact to the chest. Results to date indicate that for knee impacts against a moderately padded surface it is not possible to predict whether failure of the patella, femur or pelvis will occur first, although in these studies femoral fractures occurred most frequently. A force of 1400 lb. is recommended at this time as a reasonably conservative value for the over-all injury threshold level. Volunteers tolerated impact loads to the knee of 800-1000 lb. For loads applied over the sternum through a 25-30 padded surface, static and dynamic thoracic stiffness characteristics were determined for a limited number of cadavers.
Technical Paper

A Procedure for Normalizing Impact Response Data

1984-04-01
840884
For prescribed test conditions, a procedure is given for estimating the response characteristics of an arbitrary chosen standard subject based on the measured responses of subjects with different physical characteristics. Simple model analysis is used to develop the relationships between the subjects' responses and their physical characteristics. This analysis assures dimensional correctness among the critical parameters. The technique is applied to force-time data obtained by the Association Peugeot-Renault for lateral thoracic impacts of cadaver specimens. An averaged, normalized response curve is given for each of two impact conditions. A response corridor is prescribed for each average curve. These corridors can be used to assess the efficacy of various proposed thoracic side impact test devices exposed to similar impact conditions.
Technical Paper

Small Car Air Cushion Performance Considerations

1985-04-01
851199
A critical performance issue in the development of any air cushion restraint system is the dichotomy that exists between the inflation rate required to meet the 30 mph frontal, rigid barrier restraint performance requirements and the effect that this parameter has on increasing the risk of deployment-induced injuries to out-of-position occupants. In general, small cars experience greater vehicle deceleration levels than large vehicles in FMVSS 208, 30 mph frontal, rigid barrier tests due to tighter packaging of their front-end components. In order to meet the FMVSS 208 performance requirements for such cars, the small car air cushion must be thicker and inflated faster than the large car air cushion. Such air cushion technology will increase the risk of life-threatening, deployment-induced injuries to out-of-position occupants of the small car.
Technical Paper

Biofidelity of the Hybrid III Head

1985-06-01
851245
An analysis was done of published forehead head impact data from cadaver specimens. Only data that were sufficiently documented to allow duplication of the impact environment were used in the analysis. A Hybrid III head, a Part 572 head, a Repeatable Pete head and two WSU heads were subjected to the same impact environments as the cadavers. A comparison of peak resultant head accelerations indicated that the Hybrid III response was the most representative of the cadaver data. The Part 572 head produced accelerations which were greater than the responses of the cadavers. These results support the claim that the Hybrid III head's response is humanlike for forehead impacts.
Technical Paper

The Position of the United States Delegation to the ISO Working Group 6 on the Use of HIC in the Automotive Environment

1985-06-01
851246
A review and analysis of existing cadaver head impact data has been conducted in this paper. The association of the Head Injury Criterion with experimental cadaver skull fracture and brain damage has been investigated, and risk curves of HIC versus skull fracture and brain damage have been developed. Limitation of the search for the maximum HIC duration to 15ms has been recommended for the proper use of HIC in the automotive crash environment.
X