Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Thermal Control of a LIDAR Laser System Using a Non-Conventional Ram Air Heat Exchanger

1990-09-01
902019
This paper describes the analysis and performance testing of a uniquely designed external heat exchanger. The heat exchanger is attached externally to an aircraft and is used to cool a laser system within the fuselage. Estimates showed insufficient cooling capacity with a conventional staggered tube array in the limited space available. Thus, a non-conventional design was developed with larger tube and fin area exposed to the ram air to increase the heat transfer performance. The basic design consists of 28 circular finned aluminum tubes arranged in two parallel banks. Wind tunnel tests were performed to simulate air and liquid flight conditions for the non-conventional parallel bank arrangement and the conventional staggered tube arrangement. Performance comparisons of each of the two designs are presented. Test results are used in a computer model of the heat exchanger to predict the operating performance for the entire flight profile.
Technical Paper

A Fluid Flow Analysis for Convective Thermal Control of Flight Experiments

1989-07-01
891564
A method for thermally analyzing convectively cooled flight experiments is presented in this paper. A three-dimensional fluid flow analysis code was used to optimize air circulation patterns and predict air velocities in thermally critical areas. A comparison between a fan flow analysis using this code and the performance characteristics of a typical isothermal free jet was made. The velocity profiles and radial distribution agree well for downstream mixing of the flow. Predicted air velocities from the fluid analysis were used to calculate forced convection coefficients for the flight experiment. These convection coefficients were used in a finite difference thermal analysis code to describe the response of air temperature and heat loss for the LIDAR Atmospheric Sensing Experiment (LASE) during transient flight profiles. The performance of the existing thermal design is described and the analytical techniques used to arrive at this design are presented.
X