Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Estimation of Vehicle Roll Angle and Side Slip for Crash Sensing

2010-04-12
2010-01-0529
Estimation of vehicle roll angle, lateral velocity and side slip angle for the purpose of crash sensing is considered. Only roll rate sensor and the sensors readily available in vehicles equipped with ESC (Electronic Stability Control) systems are used in the estimation process. The algorithms are based on kinematic relationships, thus avoiding dependence on vehicle and tire models, which minimizes tuning efforts and sensitivity to parameter variations. The estimate of roll angle is obtained by blending two preliminary estimates, each valid in different conditions, in such a manner that the final estimate continuously favors the more accurate one. The roll angle estimate is used to compensate the gravity component in measured lateral acceleration due to vehicle roll or road bank angle. This facilitates estimation of lateral velocity and side slip angle from fundamental kinematic relationships involving the gravity-compensated lateral acceleration, yaw rate and longitudinal velocity.
Technical Paper

Unified Control of Brake- and Steer-by-Wire Systems Using Optimal Control Allocation Methods

2006-04-03
2006-01-0924
A new optimal control strategy for dealing with braking actuator failures in a vehicle equipped with a brake-by-wire and steer-by- wire system is described. The main objective of the control algorithm during the failure mode is to redistribute the control tasks to the functioning actuators, so that the vehicle performance remains as close as possible to the desired performance in spite of a failure. The desired motion of the vehicle in the yaw plane is determined using driver steering and braking inputs along with vehicle speed. For the purpose of synthesizing the control algorithm, a non-linear vehicle model is developed, which describes the vehicle dynamics in the yaw plane in both linear and non-linear ranges of handling. A control allocation algorithm determines the control inputs that minimize the difference between the desired and actual vehicle motions, while satisfying all actuator constraints.
Technical Paper

Control of Brake- and Steer-by-Wire Systems During Brake Actuator Failure

2006-04-03
2006-01-0923
In this paper a method of mitigating the consequences of potential brake actuator failure in vehicles with brake-by-wire (BBW) and possibly with steer-by-wire (SBW) systems is described. The proposed control algorithm is based on rules derived from general principles of vehicle dynamics. When a failure of one actuator is detected, the algorithm redistributes the braking forces among the remaining actuators in such a way that the desired deceleration of vehicle is followed as closely as possible, while the magnitude and the rate of change of the yaw moment caused by asymmetric braking are properly managed. When vehicle is equipped with BBW system only, or when the desired deceleration can be obtained by redistributing of braking forces, without generating an undesired yaw moment, no steering correction is used. Otherwise, a combination of brake force redistribution and steering correction (to counter the yaw moment generated by non-symmetric braking) is applied.
Technical Paper

Estimation of Vehicle Side Slip Angle and Yaw Rate

2000-03-06
2000-01-0696
An algorithm for estimation of vehicle yaw rate and side slip angle using steering wheel angle, wheel speed, and lateral acceleration sensors is proposed. It is intended for application in vehicle stability enhancement systems, which use controlled brakes or steering. The algorithm first generates two initial estimates of yaw rate from wheel speeds and from lateral acceleration. A new estimate is subsequently calculated as a weighted average of the two initial ones, with the weights proportional to confidence levels in each estimate. This preliminary estimate is fed into a closed loop nonlinear observer, which generates the final estimate of yaw rate along with estimates of lateral velocity and side slip angle. Parameters of the observer depend on the estimated surface coefficient of adhesion, thus providing adaptation to changes in road surface coefficient of adhesion.
Technical Paper

Elimination of Limit Cycles Due to Signal Estimation in Semi-Active Suspensions

1999-03-01
1999-01-0728
Undesirable low frequency vibrations experienced on vehicles equipped with semi-active suspension are observed: when road inputs have significant repetitive component, when there are large control gains in the suspension control algorithm, and when the velocities of the body are estimated by filtering the measured suspension deflections. Stability analysis performed on simple vehicle models demonstrates that interaction between the dynamics of the vehicle and the estimation filter is the root cause of the problem. A vehicle with an active suspension becomes unstable while a vehicle with a semi-active suspension exhibits limit cycles when the above mentioned conditions are present. A solution is proposed in which the control gains are adaptively changed depending on the frequency content of the road spectrum.
X