Refine Your Search

Search Results

Viewing 1 to 15 of 15
Journal Article

Optimization Design of a Six-Point Powetrain Mounting System with Flexible Support Rod

2014-04-01
2014-01-1682
NVH quality is one of the most important criteria by which people judge the design of a vehicle. The Powertrain Mounting System (PMS), which can reduce the vibration from engine to vehicle cab as well as the inside noise, has attained significant attention. Much research has been done on the isolation method for three- and four-point mounting. But the six-point mounting system, which is usually equipped in commercial vehicle, is seldom studied and should be paid more attention. In this paper, the support rod installed on the upside of the transmission case is considered as a flexible body. Thus a rigid-flexible coupling model of PMS is established and the necessity of the established model is analyzed by comparing the simulation results of the new model and those of the conventional model.
Journal Article

Ride Optimization for a Heavy Commercial Vehicle

2014-04-01
2014-01-0843
The ride comfort of the commercial vehicle is mainly affected by several vibration isolation systems such as the primary suspension system, engine mounting system and the cab mounting system. A rigid-flexible coupling model for the truck was built and analyzed in multi-body environment (ADAMS). The method applying the excitation on the wheels center and the engine mountings in time domain was presented. The variables' effects on the ride performance were studied by design of experiment (DOE). The optimal design was obtained by the co-simulation of the ADAMS/View, iSIGHT and Matlab. It was found that the vertical root mean square (RMS) acceleration and frequency-weighted RMS acceleration on the seat track were reduced about 17% and 11% respectively at different speeds relative to baseline according to ISO 2631-1.
Journal Article

Robust Optimal Design for Enhancing Vehicle Handling Performance

2008-04-14
2008-01-0600
A robust design procedure is applied to achieve improved vehicle handling performance as an integral part of simulation-based vehicle design. This paper presents a hybrid robust design method, the robust design process strategy (RDPS), which makes full use of the intense complementary action of characteristics between the Response Surface Methodology (RSM) and the Taguchi method, to get the robust design of the vehicle handling performance. The vehicle multi-body dynamic model is built in the platform that is constructed by the software of iSIGHT, ADAMS/CAR, and MATLAB. The design-of-experiment method of the Latin Hypercube (LHC) is used to obtain the approximate area values, and then the RDPS is utilized to achieve improved vehicle handling performance results. The validation is made by the Monte Carlo Simulation Technique (MCST) in terms of the effectiveness of the RDPS in solving robust design problems.
Technical Paper

A Fuzzy Synthesis Control Strategy for Active Four-Wheel Steering Based on Multi-Body Models

2008-04-14
2008-01-0603
Active steering systems can help the driver to master critical driving situations. This paper presents a fuzzy logic control strategy on active steering vehicle based on a multi-body vehicle dynamic model. The multi-body vehicle dynamic model using ADAMS can accurately predict the dynamic performance of the vehicle. A new hybrid steering scheme including both active front steering (applying an additional front steering angle besides the driver input) and rear steering is presented to control both yaw velocity and sideslip angle. A set of fuzzy logic rules is designed for the active steering controller, and the fuzzy controller can adjust both sideslip angle and yaw velocity through the co-simulation between ADAMS and the Matlab fuzzy control unit with the optimized membership function. To ensure the design of high-quality fuzzy control rules, a rule optimization strategy is introduced.
Technical Paper

Modeling and Optimization of Vehicle Acceleration and Fuel Economy Performance with Uncertainty Based on Modelica

2009-04-20
2009-01-0232
To design and optimize the vehicle driveline is necessary to decrease the fuel consumption and improve dynamic performance. This paper describes a methodology to optimize the driveline design including the axle ratio, transmission shift points and transmission shift ratios considering uncertainty. A new and flexible tool for modeling multi-domain systems, Modelica, is used to carry out the modeling and analysis of a vehicle, and the multi-domain model is developed to determine the optimum design in terms of fuel economy, with determinability. Secondly, a robust optimization is carried out to find the optimum design considering uncertainty. The results indicate that the fuel economy and dynamic performance are improved greatly.
Technical Paper

Loads Analysis and Optimization of FSAE Race Car Frame

2017-03-28
2017-01-0423
This paper focuses on dynamic analysis and frame optimization of a FSAE racing car frame. Firstly, a Multi-Body Dynamic (MBD) model of the racing car is established using ADAMS/Car. The forces and torques of the mechanical joints between the frame and suspensions are calculated in various extreme working conditions. Secondly, the strength, stiffness and free vibration modes of the frame are analyzed using Finite Element Analysis (FEA). The extracted forces and torques in the first step are used as boundary conditions in FEA. The FEA results suggest that the size of the frame may be not reasonable. Thirdly, the size of the frame is optimized to achieve minimized weight. Meanwhile the strength and stiffness of the frame are constrained. The optimization results reveal that the optimization methodology is powerful in lightweight design of the frame.
Technical Paper

FSAE Race Car Dynamics and Trajectory Optimization Considering Aerodynamic Effects

2018-04-03
2018-01-0821
The aerodynamic effects not only directly affect the acceleration and the fuel economy of the race car, but also have a great influence on the handling of the race car. In this paper, the vehicle multibody dynamic model with “double-wishbone suspension” and “rack and pinion steering” is established, in order to obtain aerodynamic parameters, the aerodynamic model of the vehicle is established, and the aerodynamic parameters were calculated by using CFD. In order to obtain the optimal travel track, the track model is established, according to weights allocation of the smallest curvature of each curve and the shortest curve to optimize the optimal route for racing. The influence of aerodynamic effects on the stability of vehicle control is analyzed through simulation of Endurance Racing to evaluate the maximum lateral acceleration、roll angle and other performance.
Technical Paper

On-Board Estimation of Road Adhesion Coefficient Based on ANFIS and UKF

2022-03-29
2022-01-0297
The road adhesion coefficient has a great impact on the performance of vehicle tires, which in turn affects vehicle safety and stability. A low coefficient of adhesion can significantly reduce the tire's traction limit. Therefore, the measurement of the coefficient is much helpful for automated vehicle control and stability control. Considering that the road adhesion coefficient is an inherent parameter of the road and it cannot be known directly from the information of the on-vehicle sensors. The novelty of this paper is to construct a road adhesion coefficient observer which considers the noise of sensors and measures the unknown state variable by the trained neural network. A Butterworth filter and Adaptive Neural Fuzzy Interference System (ANFIS) are combined to provide the lateral and longitudinal velocity which cannot be measured by regular sensors.
Technical Paper

Automated Vehicle Path Planning and Trajectory Tracking Control Based on Unscented Kalman Filter Vehicle State Observer

2021-04-06
2021-01-0337
For automated driving vehicles, path planning and trajectory tracking are the core of achieving obstacle avoidance. Real-time external environment perception and vehicle state monitoring play the important role in the decision-making of vehicle operation. Sensor measuring is an important way to obtain vehicle state parameters, but some parameters cannot be measured due to sensor cost or technical reasons, such as vehicle lateral velocity and side-slip angle. This disadvantage will adversely affect the monitoring of vehicle self-condition and the control of vehicle running, even it will lead to erroneous decision-making of vehicles. Therefore, this paper proposes an automated driving path planning and trajectory tracking control method based on Kalman filter vehicle state observer. Some of vehicle state data can be measured accurately by sensors.
Technical Paper

Fuel Economy Optimization with Integrated Modeling for Vehicle Thermal Management System

2016-04-05
2016-01-0225
Vehicle Thermal Management System (VTMS) is a crosscutting technology affecting the fuel consumption, engine performance and emissions. With the new approved fuel economy targets and the enhanced vehicle performance requirements, the ability to predict the impact on the fuel consumption of different VTMS modifications is becoming an important issue in the pre-prototype phase of vehicle development. This paper presents a methodology using different simulation tools to model the entire VTMS in order to understand and quantify its behavior. The detailed model contains: engine cooling system, lubrication system, powertrain system, HVAC system and intake and exhaust system. A detail model of the power absorbed by the accessory components operating in VTMS such as pumps and condenser is presented. The power of the accessory components is not constant but changing with respect to engine operation. This absorbed power is taken into account within the power produced by the engine shaft.
Technical Paper

Comparison of Rubber Bushing Models for Loads Analysis

2021-04-06
2021-01-0317
The rubber bushing is the key component to suppress vibration in the suspension system, an accurate constitutive model of rubber bushing should capture the amplitude and frequency dependency. Based on the lumped parameter model, three types of rubber bushing models are applied and compared, including the common Kelvin-Voigt model. To evaluate the model parameter and suitable frequency range, the quasi-static and dynamic tests have been performed. Comparing with the testing result, the fractional Kelvin-Voigt model combined with Berg’s friction has the minimum relative error of dynamic stiffness on the whole. Finally, two examples of chassis bushing under different loading conditions are presented. The rubber force and deflection are analyzed in both the time domain and the frequency domain, and the results show the difference of stiffness and hysteresis loop relative to frequency.
Technical Paper

Study on Vibration Reduction Technology for Transportation of TEG Dehydration Unit Regeneration Module

2021-04-06
2021-01-0334
In the petroleum and gas industry, cargo truck is one of the most important ways to transfer the skid-mounting from the manufacturer to the job location. Under the condition of bumpy road surface, the random vibration from the ground can easily cause the resonance of the internal equipment components of the skid-mounting, produce large deformation in the pipeline and equipment connection, and even the equipment will be damaged. In this paper, the finite element analysis model and dynamic rigid flexible coupling model of a TEG (Triethyleneglycol) dehydration unit regeneration skid-mounting are established by using the finite element analysis and multi-body dynamics software. The modal analysis of the skid and the vibration of the whole vehicle under different road excitation and driving conditions are carried out. Two solutions are proposed to improve the anti-vibration ability of the skid, and comparative analysis is made.
Technical Paper

Analysis on Synchronizer of Manual Transmission using Finite Element Analysis

2015-04-14
2015-01-1148
A simulation model of the single cone synchronizer is presented using the dynamic implicit algorithm with commercial Finite Element Analysis (FEA) software Abaqus. The meshing components include sleeve gear, blocking ring and clutch gear, which are all considered as deformation body. The processes mainly contain the contact between sleeve teeth and blocking teeth, meshing period and the impact of sleeve teeth and clutch gear teeth, and these nonlinear contact steps are realized with Abaqus. In addition, a shift force derives from experiment is applied to the sleeve ring, and a moment is added to the clutch gear to realize the relative rotational speed. Based on the FEA model, the effect of the varied frictional coefficients between the cone surfaces of blocking ring and clutch gear on the synchronizer time and contact stress is discussed. Variation of stresses and contact force with respect to time are evaluated from this analysis.
Technical Paper

Simulation and Analysis on a Self-Energizing Synchronizer of Transmission

2015-04-14
2015-01-0633
The structure of a classic self-energizing synchronizer is presented, and a simulation model is developed for analyzing the synchronizer performance. The self-energizing synchronizer has a disk spring and several energizing teeth on the sleeve for increasing the shift force. Besides, the asymmetric arrangement of chamfer teeth is applied to increase the torque for rotating ring and shift gears smoothly. The parameterized model of the typical synchronizer is developed with ADAMS for studying the synchronizer performance. In order to truly reflect the reality, the teeth of the claw plate are connected to the gear ring through bushing force alone, and the stiffness coefficient are obtained through the analysis of finite element model. Based on the dynamic model, the behavior of synchronizer with asymmetric arrangement of chamfer teeth, and the energizing effect of stiffness of the disk spring are studied. The simulation results can be used to design the synchronizer.
Technical Paper

Multi-domain Modeling and Simulation of Vehicle Thermal System Based on Modelica

2014-04-01
2014-01-1183
Vehicle Thermal Management System (VTMS) is a cross-cutting technology that directly or indirectly affects engine performance, fuel economy, safety and reliability, driver/passenger comfort, emissions. This paper presents a novel methodology to investigate VTMS based on Modelica language. A detailed VTMS platform including engine cooling system, lubrication system, powertrain system, intake and exhaust system, HVAC system is built, which can predict the steady and transient operating conditions. Comparisons made between the measured and calculated results show good correlation and approve the forecast capability for VTMS. Through the platform a sensitivity analysis is presented for basic design variables and provides the foundation for the design and matching of VTMS. Modelica simulation language, which can be efficiently used to investigate multi-domain problems, was used to model and simulate VTMS.
X